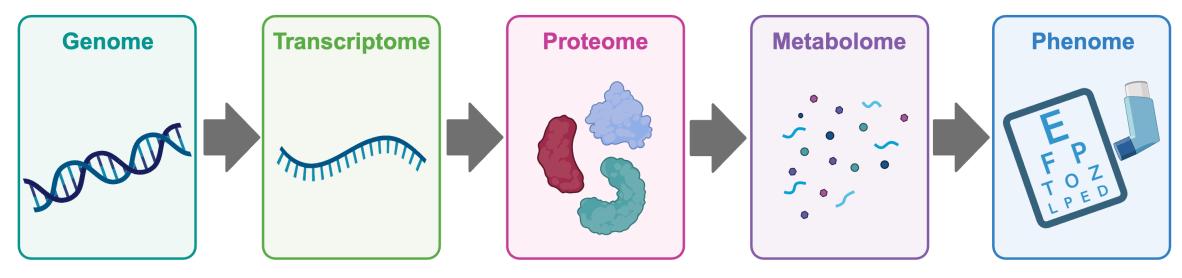


Protein MR in the UK Biobank

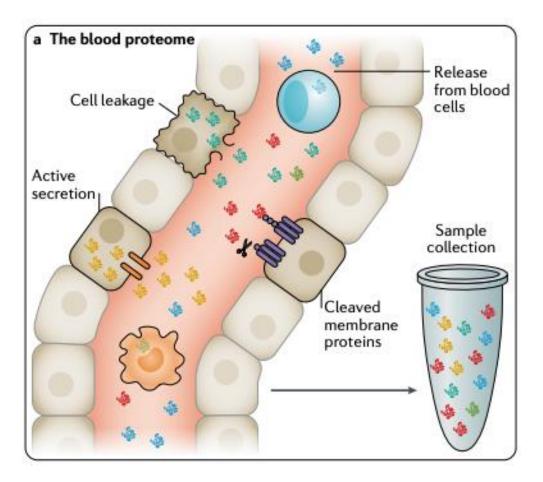
Emily Daubney

Proteins in context



- Proteins = important biological functional units
- Intermediate phenotype meaning it is a combination of our underlying genetics and our environment
- The further away from the genome the more potential to interact with environment and the more dynamic
- Large cross play between these different levels (it's not actually a simple follow-on like the figure implies)

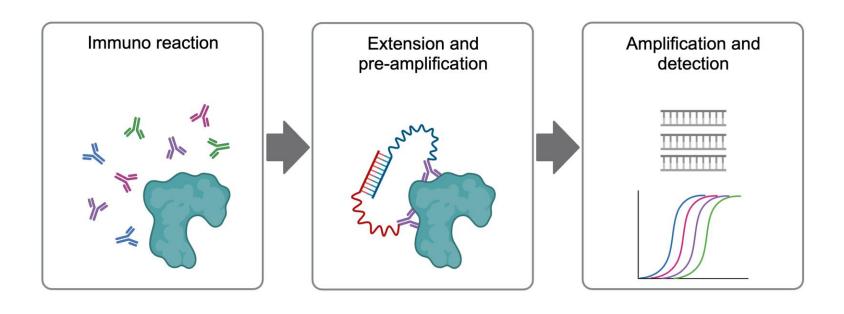
The blood proteome



- Proteome GWAS mainly consider the blood proteome
 - UK Biobank = plasma samples measured with Olink
- Blood proteome includes proteins from different cells
 and tissues
 - Secretion for signalling or enzymatic actions
 - Leakage from damaged cells
 - Most common are those produced and secreted by the liver
- Most proteome GWAS utilise scalable affinity-based
 proteomic techniques
 - Olink = anti-body based affinity proteomics
 - SomaScan = aptamer-based affinity proteomics

Olink overview

- Antibody-based affinity proteomics
- Binding of two separate, complimentary antibodies
- Protein-specific binding with a readout that relies on DNA concentrations (through qPCR)



Olink overview

Advantages	Disadvantages
 High sample throughput Decent proteome coverage (~3000 protein < SomaScan) Improved specificity compared to other high throughput technologies 	 Relative quantification Possibility of epitope effects Does not address the issue of different proteoforms

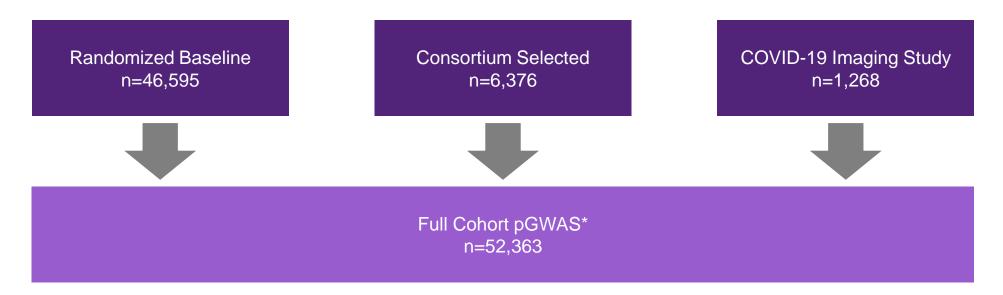
What is NPX?

- NPX = Normalized Protein eXpression
- Measure relative changes in protein expression (i.e. this is not a concentration)
 - Can only compare NPX for same proteins within the same study
- Increased NPX corresponds to increased concentration



Proteins and UK Biobank

- UKB-PPP = UK Biobank Pharma Proteomics Project
- Proteomic profiling on blood plasma samples collected from 54,219 UKB participants
- Measured 2923 unique proteins using Olink Explore 3072 PEA



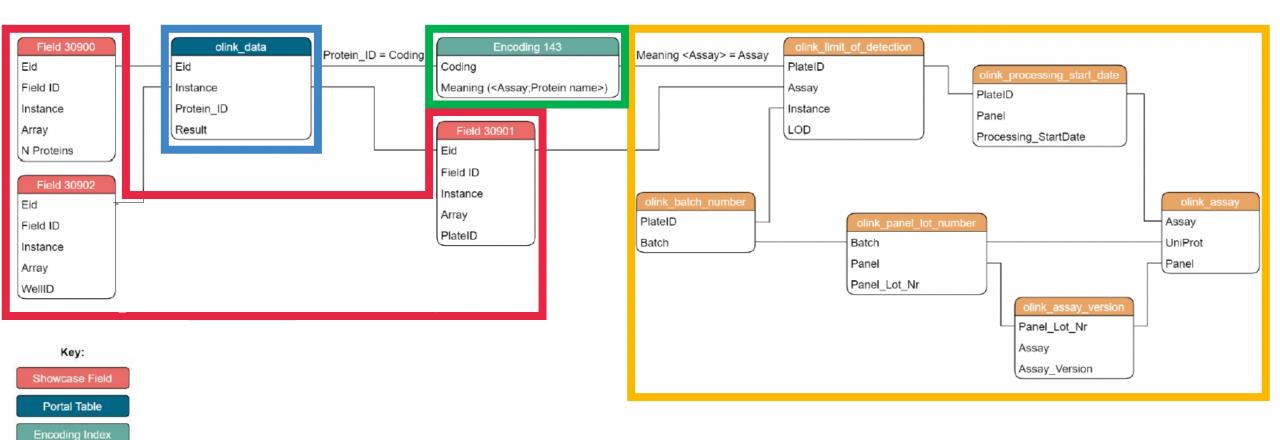
*publicly available summary statistics from Sun et al. (2023) https://metabolomips.org/ukbbpgwas/

How is the data stored?

ib	iobank*				Index	Browse	Search	Catalogues	Downloads	Login	Help
	tegory 1839 ogical samples ► Blood a	ssavs I	Pro	oteomics ► Prot	ein biomar	kers					
		554y5 F				NOI D					
	cription d 30900 in this category g	arante a		es to the norm	alised prote	in expressio	n (NPX) da	ata made av	ailable in th	a olink dat	a table via
	Data Portal.	grants a			ansed prote	an expressio					
5 Data	-Fields 1 Parent Category 12 R	lesources]								
	w Name Olink Analysis Report	Res ID 4655									
Pdf Pdf	Olink Explore 1536 - FAQ	4657									
Pdf	Olink data normalisation strategy	<mark>4656</mark>		Resource	s expla	ining ava	ailable c	lataset			
Pdf	Olink proteomics data	4654									
Pdf	Quality control of olink NPX dataset	4658									
ata	olink assay	1013									
ata	olink assay version	1014									
ata	olink assay warning	1015									
ata	olink batch number	1016		Additiona	I data fi	les that r	need to	be comb	pined wit	h the	
ata	olink limit of detection	1017		download	led Olin	k NPX d	ata				
ga data	olink panel lot number	1018									
ata	olink processing start date	1019									

How is the data stored?

Resource Dataset



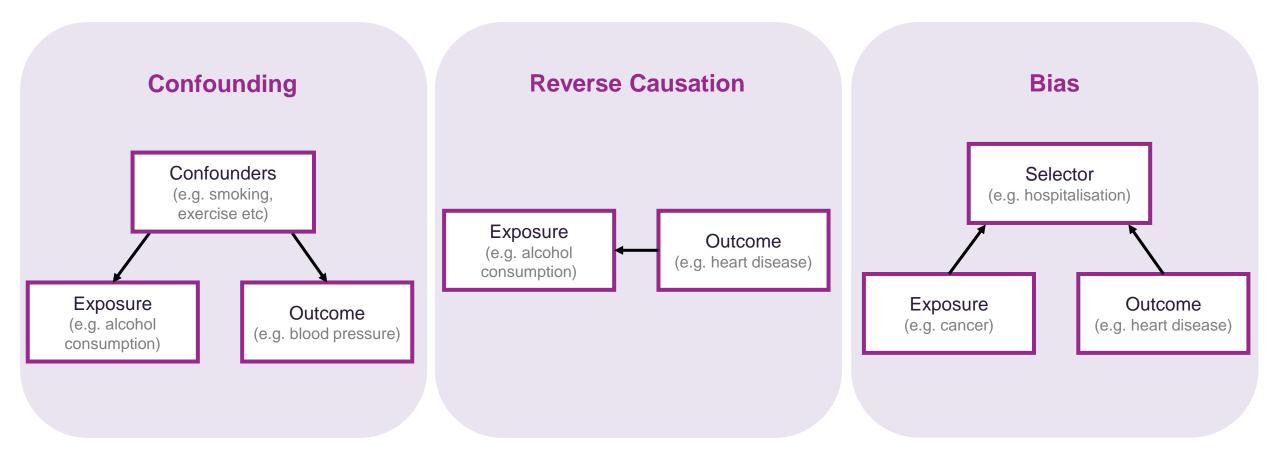
Protein QC options

- Assay warning flag
 - Samples that do not pass QC are indicated with "WARN"
 - Failed samples are indicated with "FAIL"
 - The flag is a reflection of sample QC and assay QC
- Individuals:
 - Low number of proteins measured
 - Consistently below limit of detection (LOD)
- Proteins:
 - Proteins with few individuals
 - Consistently below LOD for majority of individuals
 - GLIPR1 has failed a number of QC steps and should be excluded

Our example: PCSK9

- PCSK9 = proprotein convertase subtilisin/kexin type 9
- PCSK9 binds LDLR and marks it for destruction
- LDLR is responsible for the clearance of LDL-cholesterol
- By inhibiting PCSK9, LDLR is able to reused → increasing LDL clearance
- Analyses we'll perform:
 - Observational analysis
 - Instrument selection (*cis*-pQTLs)
 - Mendelian randomisation (MR)
 - Protein specific sensitivity analysis
 - HEterogeneity In Dependent Instruments (HEIDI)
 - Colocalisation (coloc)

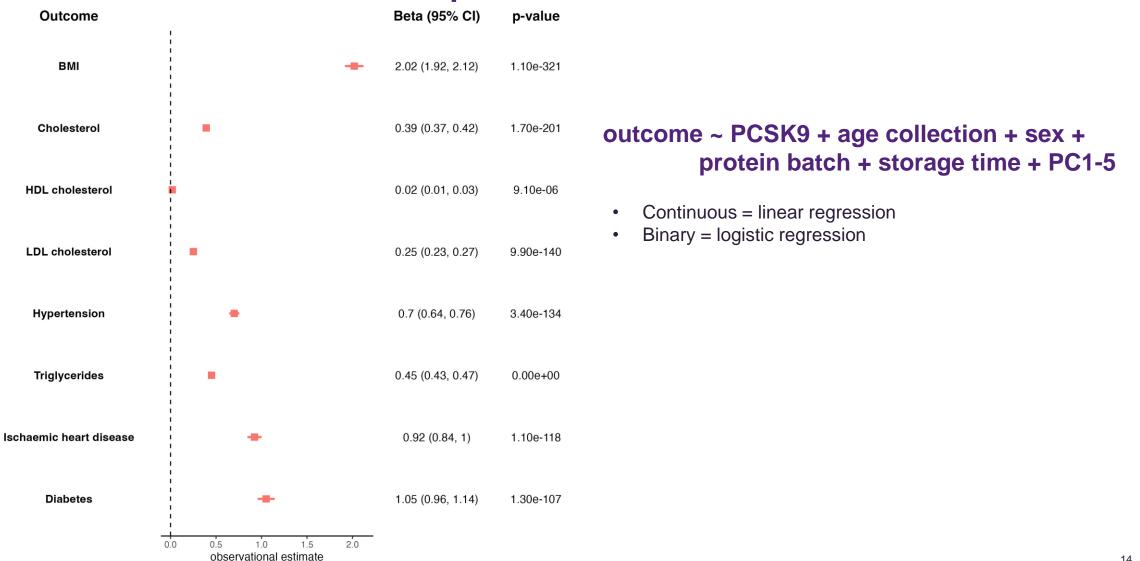
Observational analysis



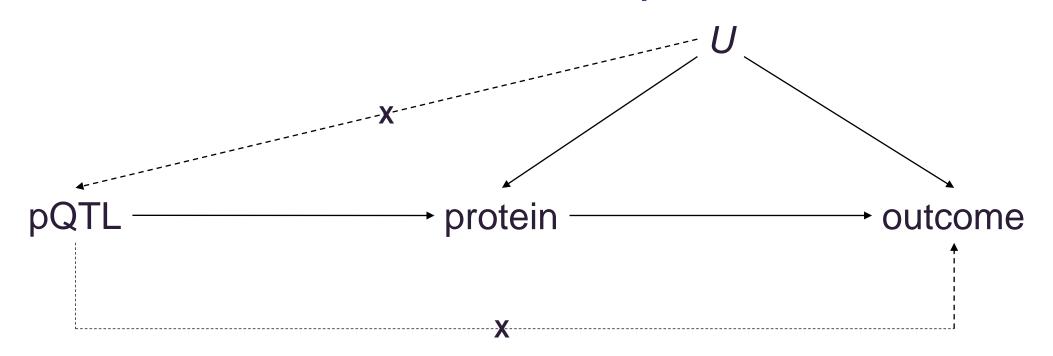
Observational analysis

- Is ancestry important?
 - Ancestry has the possibility to act as a confounder (especially for some traits/diseases)
- Exclude related individuals or include relatedness in model
- Common covariates
 - Age at sample collection
 - Sex
 - Sample storage duration
 - Protein batch
 - Genetic PCs
- Remember this is a single timepoint and also a blood protein measure
 - Proteins are dynamic (this will be more of a factor for some traits than others)

Observational example: PCSK9



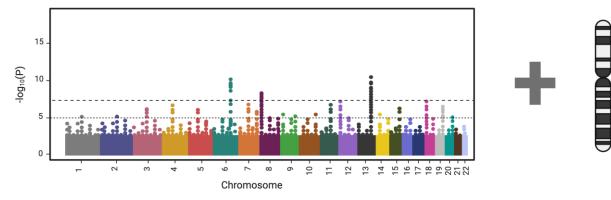
Mendelian Randomization with proteins

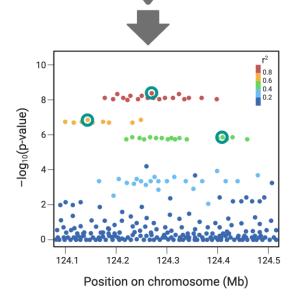


- General preference for use of *cis*-pQTLs as instruments (excluding *trans*-pQTLs)
- Lack of tissue specificity
- Potential for reverse causality

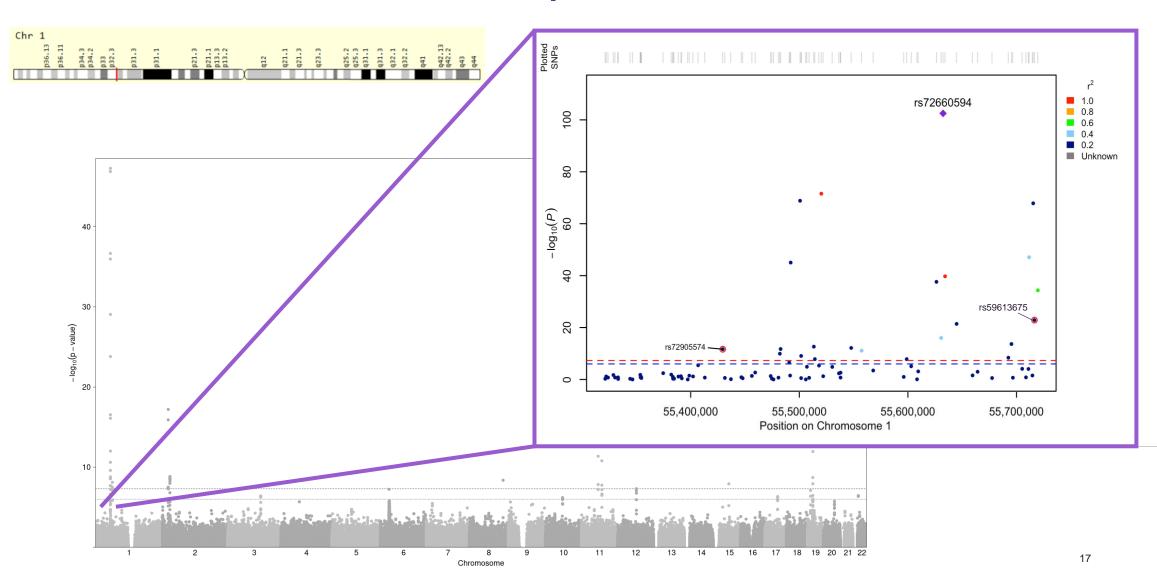
Instrument selection

- Perform GWAS and select pQTLs
 - Clumping for independent instruments
 - *cis*-pQTLs are generally ±500kb of the protein gene coding region
- *cis*-pQTLs = within or close proximity to protein-coding gene
 - Suggests direct influence of pQTL on protein expression or turnover
 - Considered to be more likely reflect direct or biological effect
 - More likely to have epitope effects
- *trans*-pQTLs = not within or close to protein-coding gene
 - Indicates indirect link between pQTL and protein expression or turnover
 - *trans*-pQTLs are likely to be pleiotropic





Instrument selection example: PCSK9



Protein MR in the UK Biobank

- 1-sample MR
 - For binary traits/diseases check prevalence in the UKB-PPP to ensure decently powered
 - For a disease outcome exclude the "cases" from the GWAS for instrument selection
 - Perform 2 Stage Least Squares (2SLS) with *cis*-pQTLs or an allelic score
- 2-sample MR
 - Sample overlap is likely to be a problem with most publicly available summary statistics
 - Check the F-statistic for instrument strength → most *cis*-pQTLs will be strong instruments and less likely to be impacted by this problem
 - Perform Inverse Weighted Variance (IVW) or Wald ratio depending on number of available instruments
- Power calculator available: <u>https://shiny.cnsgenomics.com/mRnd/</u>

Performing MR

1-sample MR

2-sample MR

1. extract allele dosage for *cis*-pQTLs (e.g. plink)

3. predict values of PCSK9 using $\hat{\beta}_{pQTL-PCSK9}$ (e.g. ivreg)

2. estimate $\hat{\beta}_{pQTL-PCSK9}$ (e.g. ivreg) 4. estimate causal effect using predicted values (e.g. ivreg or glm)

pQTL ───→ PCSK9 ───→ outcome

1. extract *cis*-pQTLs in PCSK9 dataset and outcome dataset

3. estimate causal effect (e.g. TwoSampleMR, GSMR)

2. harmonise alleles between datasets (e.g. TwoSampleMR)

4. sensitivity analysis as appropriate (e.g. TwoSampleMR, HEIDI, coloc)

UKB MR example: PCSK9

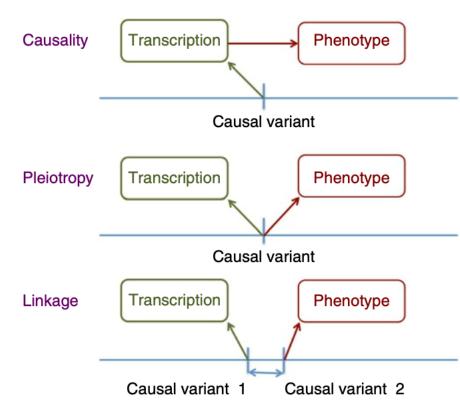
Observational
 1-sample MR
 Sun et al. (2023)

2-sample MR

- We expect our observational association to be the most significant association
- Looking for consistent alignment of beta direction across different methods
- MR findings by themselves are not evidence enough of a causal association
 - Triangulation = integration of results from two or more different study designs, that have different and unrelated key sources of potential bias

	Outcome		Beta (95% CI)	p-value
	BMI	-	2.02 (1.92, 2.12)	1.09e-321
		_	-0.72 (-1.82, 0.38)	2.02e-01
			-0.29 (-0.72, 0.15)	1.95e-01
	Cholesterol		0.39 (0.37, 0.42)	1.73e-201
		- - -	0.43 (0.15, 0.7)	2.16e-03
		· · · · · · · · · · · · · · · · · · ·	0.55 (0.24, 0.85)	4.27e-04
3)			0.31 (0.27, 0.35)	1.04e-48
	HDL cholesterol	•	0.02 (0.01, 0.03)	9.08e-06
		+	-0.04 (-0.13, 0.06)	4.17e-01
		•	0.01 (-0.01, 0.04)	3.03e-01
			-0.04 (-0.06, -0.01)	5.10e-03
	LDL cholesterol		0.25 (0.23, 0.27)	9.88e-140
			0.39 (0.18, 0.6)	2.48e-04
			0.46 (0.22, 0.71)	2.45e-04
			0.46 (0.41, 0.5)	6.11e-76
	Hypertension	1	0.7 (0.64, 0.76)	3.41e-134
			-0.6 (-1.13, -0.06)	2.92e-02
		+	0.06 (-0.15, 0.26)	5.86e-01
	Triglycerides		0.45 (0.43, 0.47)	0.00e+00
			-0.06 (-0.3, 0.18)	6.23e-01
		•	-0.07 (-0.15, 0.02)	1.23e-01
		<u>.</u>	0 (-0.04, 0.04)	8.69e-01
lsc	haemic heart disease	•	0.92 (0.84, 1)	1.10e-118
			-0.78 (-1.55, -0.01)	4.80e-02
			0.41 (0.13, 0.7)	4.36e-03
			0.23 (0.16, 0.31)	1.05e-09
	Diabetes	•	1.05 (0.96, 1.14)	1.29e-107
			0.21 (-0.76, 1.18)	6.76e-01
			0.1 (-0.24, 0.43)	5.72e-01
		-2 -1 0 1 2	_	20
		effect estimate		

HEIDI (HEterogeneity In Dependent Instruments)



Zhu et al. (2015)

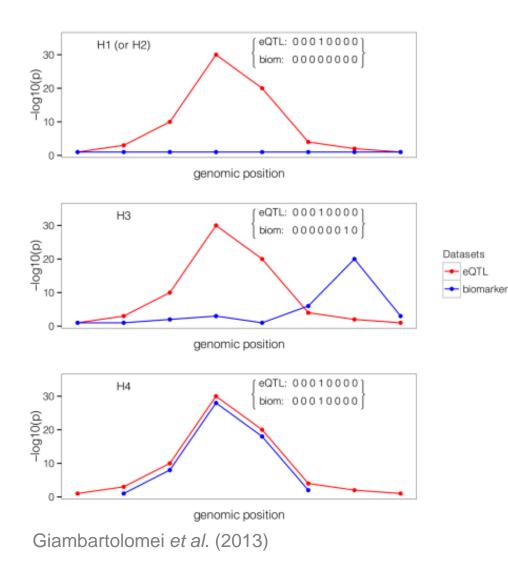
- Heterogeneity test of valid SNPs within a region of interest
- Confounding due to linkage disequilibrium (LD) arises from using tagged SNPs/non-causal SNPs as instruments
- Interpreting results: for HEIDI a significant results (p < 0.05) indicates different causal variants responsible for exposure and outcome

Example: PCSK9 and LDL-cholesterol

HEIDI

SNP	$\widehat{\boldsymbol{b}}_{zx}$	\widehat{b}_{zy}	<i>p_{HEIDI}</i>
rs72905574	0.0360	0.0197	0.8269

Colocalisation



- Testing for a shared causal variant between our exposure (protein) and outcome of interest
 - H_0 : neither trait has a genetic association in the region
 - H_1 : only trait 1 has a genetic association in the region
 - H_2 : only trait 2 has a genetic association in the region
 - H_3 : both traits are associated, but with different causal variants
 - *H*₄: both traits are associated and share a single causal variant
- coloc assumes a single causal variant, to allow for multiple causal variants preform fine mapping with SusieR

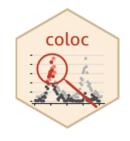
Example: PCSK9 and LDL-cholesterol

PP.H0	PP.H1	PP.H2	PP.H3	PP.H4
0.00	1.52e ⁻²⁷⁹	0.00	0.00	1.00

Software applications

- TwoSampleMR: https://mrcieu.github.io/TwoSampleMR/
- MRbase: https://www.mrbase.org/
- GSMR and HEIDI: https://yanglab.westlake.edu.cn/software/gsmr/
- AER: https://cran.r-project.org/web/packages/AER/index.html
- coloc: <u>https://chr1swallace.github.io/coloc/</u>
- SusieR: https://stephenslab.github.io/susieR/reference/susie.html
- biomaRt: <u>https://bioconductor.org/packages/release/bioc/html/biomaRt.html</u>
- plink: https://www.cog-genomics.org/plink/

GSMR Generalised Summary-data-based Mendelian Randomisaion



Recent publications – UK Biobank proteins

Article

Large-scale plasma proteomics comparisons through genetics and disease associations

https://doi.org/10.1038/s41586-023-065	63-x
Received: 4 August 2022	
Accepted: 22 August 2023	
Published online: 4 October 2023	
Open access	
Check for updates	

Grimur Hjorleifsson Eldjarn¹⁷, Egil Ferkingstad¹⁷, Sigrun H. Lund¹², Hannes Helgason¹², Olafur Th. Magnusson¹, Kristbjorg Gunnarsdottir¹, Thorunn A. Olafsdottir¹, Bjarni V. Halldorsson¹³, Pall I. Olason¹, Florian Zink¹, Sigurjon A. Gudjonsson¹, Gardar Sveinbjornsson¹, Magnus I. Magnusson^{1,} Agnar Helgason¹⁴, Asmundur Oddsson¹, Gisli H. Halldorsson¹, Magnus I. Magnusson¹⁵, Saedis Saevarsdottir¹⁵, Thjodbjorg Eiriksdottir¹, Gisli Masson¹, Hreinn Stefansson¹, Inglieff Jonsdottir¹⁵, Hilma Holm¹, Thorunn Rafnar¹, Pall Melsted¹³, Jona Saemundsdottir¹, Gudmar Houfeifsson^{1,} Magnus O. Ulfarsson¹⁶, Daniel F. Gudbjartsson¹², Unnur Thorsteinsdottir¹⁵, Patrick Sulem¹⁵² & Kari Stefansson^{1,552}

Article

Rare variant associations with plasma protein levels in the UK Biobank

https://doi.org/10.1038/s41586-023-06547
Received: 5 October 2022
Accepted: 15 August 2023
Published online: 4 October 2023
Open access

tyan S. Dhindsa¹³⁰⁵³, Oliver S. Burren²³⁰, Benjamin B. Sun¹³⁰, Bram P. Prins², borota Matelska², Eleanor Wheeler², Jonathan Mitchell², Erin Oerton², fentzislava A. Hristova³, Katherine R. Smith², Keren Carss³, Sebastian Wasilewski⁷, undrwe R. Harper², Dirk S. Paul², Margarete A. Fabre³, Heiko Runz³, Coralie Viollet², lenjamin Challis⁸, Adam Platt⁸, AstraZeneca Genomics Initiative^{*}, Dimitrios Vitsios², iuan A. Ashley⁷, Christopher D. Whelan³, Menelas N. Pangalos⁸, Quanli Wang¹ & lavé Petrovski²⁸⁵⁶

Cel Reports Medicine

Article

Plasma proteins and onset of type 2 diabetes and diabetic complications: Proteome-wide Mendelian randomization and colocalization analyses

Authors

Shuai Yuan, Fengzhe Xu, Xue Li, Jie Chen, Jie Zheng, Christos S. Mantzoros, Susanna C. Larsson

Plasma proteomic associations with genetics and health in the UK Biobank

https://doi.org/10.1038/s41586-023-	06592-6
Received: 17 June 2022	
Accepted: 31 August 2023	
Published online: 4 October 2023	
Open access	
Check for updates	

Benjamin B. Sun¹²², Joshua Chiou^{2,26}, Matthew Traylor^{3,26}, Christian Benner^{4,26}, Yi-Hsiang Hsu^{5,26}, Tom G. Richardson^{3,6,26}, Praveen Surendran^{6,26}, Anubha Mahajan^{4,26}, Chloe Robins^{7,26} Steven G. Vasquez-Grinnell^{8,26}, Liping Hou^{9,26}, Erika M. Kvikstad^{8,26}, Oliver S. Burren¹⁰, Jonathan Davitte⁷, Kyle L. Ferber¹¹, Christopher E. Gillies¹², Åsa K. Hedman¹³, Sile Hu³, Tinchi Lin¹⁴, Rajesh Mikkilineni¹⁵, Rion K. Pendergrass⁴, Corran Pickering¹⁸, Bram Prins¹⁰, Denis Baird¹, Chia-Yen Chen¹, Lucas D. Ward¹⁷, Aimee M. Deaton¹⁷, Samantha Welsh¹⁶, Carissa M. Willis¹⁷, Nick Lehner¹⁸, Matthias Arnold^{18,19}, Maria A. Wörheide¹⁸, Karsten Suhre²⁰, Gabi Kastenmüller¹⁸, Anurag Sethi²¹, Madeleine Cule²¹, Anil Raj²¹, Alnylam Human Genetics*, AstraZeneca Genomics Initiative*, Biogen Biobank Team*, Bristol Myers Squibb*, Genentech Human Genetics*, GlaxoSmithKline Genomic Sciences*, Pfizer Integrative Biology*, Population Analytics of Janssen Data Sciences*, Regeneron Genetics Center*, Lucy Burkitt-Gray¹⁶, Eugene Melamud²¹, Mary Helen Black⁹, Eric B. Fauman² Joanna M. M. Howson³, Hyun Min Kang¹², Mark I. McCarthy⁴, Paul Nioi¹⁷, Slavé Petrovski^{10,22} Robert A. Scott⁶, Erin N. Smith²³, Sándor Szalma²³, Dawn M. Waterworth²⁴, Lyndon J. Mitnaul¹², Joseph D. Szustakowski^{8,27}, Bradford W. Gibson^{5,27}, Melissa R. Miller^{2,27} & Christopher D. Whelan^{1,25,27123}

BMI Yale

medRχiv

THE PREPRINT SERVER FOR HEALTH SCIENCES

View current version of this article

Follow this preprint

Blood protein levels predict leading incident diseases and mortality in UK Biobank

Danni A. Gadd,
 Robert F. Hillary, Zhana Kuncheva, Tasos Mangelis, Romi Admanit, Jake Gagnon, Tinchi Lin, Kyle Ferber, Heiko Runz, Biogen Biobank Team,
 Riccardo E. Marioni,
 Christopher N. Foley, Benjamin B. Sun doi: https://doi.org/10.1101/2023.05.01.23288879

Recent publications – protein MR

Cell Genomics

Article

Sun et al. Genome Medicine (2023) 15:75 https://doi.org/10.1186/s13073-023-01229-9 Genome Medicine

RESEARCH

Identification of novel protein biomarkers and drug targets for colorectal cancer by integrating human plasma proteome

Jing Sun¹, Jianhui Zhao¹, Fangyuan Jiang¹, Lijuan Wang², Qian Xiao³, Fengyan Han⁴, Jie Chen¹, Shuai Yuan⁵, Jingsun Wei³, Susanna C. Larsson^{5,6}, Honghe Zhang⁴, Malcolm G Dunlop^{7,8}, Susan M Farrington⁷, Kefeng Ding^{3†}, Evropi Theodoratou^{2,7†} and Xue Li^{1,2*†}

https://doi.org/10.1038/s42255-023-00742-w

Proteome-wide Mendelian randomization mediator of the effect of obesity on COVID-19

Received: 17 June 2022
Accepted: 10 January 2023
Published online: 20 February 2023
Check for updates

Satoshi Yoshiji 🛈 1.2.3.4, Guillaume Butler-Laporte 🛈 1.5, Tianyuan Lu 🛈 1.6.7 Julian Daniel Sunday Willett^{1,6}, Chen-Yang Su ^{1,8}, Tomoko Nakanishi ^{1,2,3,4}, David R. Morrison 1, Yiheng Chen^{1,2}, Kevin Liang^{1,6}, Michael Hultström 1,5,9,10, Yann Ilboudo¹, Zaman Afrasiabi ¹, Shanshan Lan¹, Naomi Duggan¹, Chantal DeLuca¹, Mitra Vaezi¹, Chris Tselios¹, Xiaoqing Xue¹, Meriem Bouab¹, Fangyi Shi¹, Laetitia Laurent¹, Hans Markus Münter ⁽¹⁾, Marc Afilalo^{1,12}, Jonathan Afilalo^{1,5,13}, Vincent Mooser ^{(2,11}, Nicholas J. Timpson ^(3,14), Hugo Zeberg^{15,16}, Sirui Zhou^{1,2,11}, Vincenzo Forgetta^{1,7}, Yossi Farjoun¹ & J. Brent Richards @ 1.2.5,7,17

with genome

nature metabolism

Article

implicates nephronectin as an actionable severity

Accepted: 10 January 2023	
Published online: 20 Febr	uary 2023
Check for updates	

Proteome-wide Mendelian randomization in global biobank meta-analysis reveals multi-ancestry drug targets for common diseases

Authors

Huiling Zhao, Humaria Rasheed, Therese Haugdahl Nøst, ..., Benjamin M. Neale, Tom R. Gaunt, Jie Zhena

Therapeutic targets for inflammatory bowel disease: proteome-wide Mendelian randomization and colocalization analyses

Jie Chen, ^{ah} Fengzhe Xu, ^{hh} Xixian Ruan, ^{ch} Jing Sun,^a Yao Zhang,^d Han Zhang,^a Jianhui Zhao,^a Jie Zheng,^c Susanna C. Larsson,^{f,g} Xiaoyan Wang,^{c+++} Xue Li."*** and Shuai Yuan

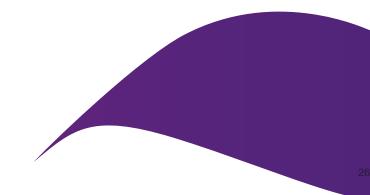
nature genetics (R) Check for updates

Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases

Jie Zheng^{1,2} , Valeriia Haberland^{1,2}, Denis Baird^{1,2}, Venexia Walker^{1,2}, Philip C. Haycock^{1,2}, Mark R. Hurle³, Alex Gutteridge⁴, Pau Erola¹, Yi Liu¹, Shan Luo^{1,5}, Jamie Robinson¹, Tom G. Richardson¹⁰, James R. Staley¹⁶, Benjamin Elsworth¹⁰, Stephen Burgess⁶, Benjamin B. Sun¹⁰ John Danesh^{6,7,8,9,10,11}, Heiko Runz¹², Joseph C. Maranville¹³, Hannah M. Martin¹⁴, James Yarmolinsky¹, Charles Laurin¹, Michael V. Holmes^{1,15,16,17}, Jimmy Z. Liu¹², Karol Estrada¹², Rita Santos¹⁸, Linda McCarthy⁴, Dawn Waterworth³, Matthew R. Nelson³, George Davey Smith⁽¹⁾, 12,19,

Acknowledgements

Examples performed using data provided by UK Biobank Application 53641



Helpful papers

- Proteome GWAS: Suhre K, McCarthy MI, Schwenk JM. Genetics meets proteomics: perspectives for large population-based studies. Nat Rev Genet. 2021 Jan;22(1):19-37. doi: 10.1038/s41576-020-0268-2. Epub 2020 Aug 28. PMID: 32860016.
- **Mendelian randomisation:** Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008 Apr 15;27(8):1133-63. doi: 10.1002/sim.3034. PMID: 17886233.
- **MR Egger:** Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015 Apr;44(2):512-25. doi: 10.1093/ije/dyv080. Epub 2015 Jun 6. PMID: 26050253; PMCID: PMC4469799.
- Weighted Median: Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol. 2016 May;40(4):304-14. doi: 10.1002/gepi.21965. Epub 2016 Apr 7. PMID: 27061298; PMCID: PMC4849733.
- **Modal Estimator:** Fernando Pires Hartwig, George Davey Smith, Jack Bowden, Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption, *International Journal of Epidemiology*, Volume 46, Issue 6, December 2017, Pages 1985–1998, https://doi.org/10.1093/ije/dyx102
- **Colocalisation:** Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, Plagnol V. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014 May 15;10(5):e1004383. doi: 10.1371/journal.pgen.1004383. PMID: 24830394; PMCID: PMC4022491.
- Fine mapping: Gao Wang, Abhishek Sarkar, Peter Carbonetto, Matthew Stephens, A Simple New Approach to Variable Selection in Regression, with Application to Genetic Fine Mapping, *Journal of the Royal Statistical Society Series B: Statistical Methodology*, Volume 82, Issue 5, December 2020, Pages 1273–1300, http://doi.org/10.1111/rssb.12388
- SMR & HEIDI: Zhu, Z., Zhang, F., Hu, H. *et al.* Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. *Nat Genet* **48**, 481–487 (2016). https://doi.org/10.1038/ng.3538

Useful sites

- MR Dictionary: <u>https://mr-dictionary.mrcieu.ac.uk/</u>
- PCG Video Textbook: https://pgcanalytics.github.io/pgcvideotextbook/welcome.html
- Boulder 2021: https://www.colorado.edu/ibg/international-workshop/2021-syllabus

Pseudocode: 1-sample MR

load libraries

library(AER)

run first stage

first_stage = iv_reg(exposure ~ instruments, data)
fitted_values = predict(first_stage, new_data)

run second stage

for continuous outcome

second_stage = ivreg(outcome ~ fitted_values, new_data)

for binary outcome

second_stage = glm(outcome ~ fitted_values, family = "binomial", new_data)

Pseudocode: 2-sample MR

load libraries

library(TwoSampleMR)

format data using TwoSampleMR

exp_dat = format_data(exp_input, *snp_col*, *beta_col*, *se_col*, *eaf_col*, *effect_allele_col*, *other_allele_col*, *pval_col*, *chr_col*, *pos_col*)

out_dat = format_data(out_input, type="outcome", *snp_col*, *beta_col*, *se_col*, *eaf_col*, *effect_allele_col*, *other_allele_col*, *pval_col*, *chr_col*, *pos_col*)

harmonise exposure and outcome data sets

har_dat = harmonise_data(exp_dat, out_dat)

perform MR

mr_res = mr(har_dat)