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What are GWAS summary statistics (SumStats)?
Where to download?
What should we check?
How to use them? 

- Example: polygenic score (PGS) prediction using SBayesR

Outline



CRICOS code 00025B 3

Consensus of sharing GWAS summary statistics 
(in human genetics research community)
Has Become a standard to share and make publicly available the 
summary-level data when publishing a GWAS study.

Introduction Methods Real Data Future Work References

Why do we consider single-SNP summary data?
Single-SNP GWAS summary statistics {�̂j, �̂2j } are widely available.

�̂j := (X¸j Xj)
�1X¸j y

�̂2j := (nX¸j Xj)
�1(y � Xj�̂j)¸(y � Xj�̂j)

Survey of GWAS summary statistics:
Page 4-12 of Alkes Price’s slides [link] at ASHG 2015

Xiang Zhu RSS JSM 2016, July 31 4 / 15

—Nat Genet editorial, July 2012 



CRICOS code 00025B 4

analyses have many more researcher degrees of free-
dom and are, nowadays, more determinant of publica-
tion than the mere number of GWAS hits. Hence, there 
are more incentives and possibilities for questionable 
research practices206 and the benefit of preregistration 
is greater for these analyses. Analysis plans can be 
uploaded at the Open Science Framework with a preset 
moratorium. In a format known as registered reports207, 
peer review occurs before data are collected or analysed 
and is based on the introduction and methods sections 
alone. As a consequence, publication is conditional on 
methodological rigour as opposed to results, which aids 
in attenuating publication bias208. In contrast to preregis-
tration, registered reports are submitted to specific jour-
nals that offer this scheme (more details can be found 
at the Open Science Framework Registered Reports 
resource). Preregistrations and registered reports are 
mostly used in data- generating research but can also be 
beneficial for the more common analysis of secondary 
data209,210.

Limitations and optimizations
GWAS have proven to be a highly successful method 
for identifying trait- associated variants, yet several 
outstanding methodological challenges still need to be 
addressed, such as population stratification and high 
polygenicity. Additionally, GWAS raise a range of eth-
ical issues that require careful consideration, which we 
discuss below.

Methodological challenges
Population stratification. Although current methods 
can address unaccounted- for population stratification, 
it can still cause spurious or biased associations — par-
ticularly in the meta- analyses of multiple cohorts211,212. 
Effects are most pronounced in the analyses of polygenic 
scores that include thousands of SNPs below genome- 
wide significance29,213. Population stratification can 
occur even in homogeneous populations; for example, 
studies have uncovered population stratification and 
related bias in the UK Biobank, which is predominantly 

composed of white British participants214,215. As cur-
rent methods for correcting the effects of stratifica-
tion are based on common variants, such as principal 
component analysis or linear mixed models, they are 
insufficient when many rare variants are included in 
the analyses, especially when population stratification 
is driven by recent demographic changes26,30. Family- 
based association studies31,50,216 can avoid stratification, 
although they tend to be underpowered compared with 
population- based studies. Significant variants can be 
identified in population- based GWAS and effect sizes 
re- estimated in family- based studies to try to obtain 
estimates that are not confounded by population struc-
ture50,51,211,217. However, this approach cannot completely 
eliminate population stratification in PRS data if the lead 
SNPs identified in the original GWAS are correlated with 
the environment30,51. Further work is needed to better 
correct for population structure in GWAS and associ-
ated analyses. Methods based on principal component 
analysis of rare variants or identity by descent may be 
appropriate in cases of recently acquired population  
substructure.

Polygenicity. The extreme polygenicity of many 
traits8,11,218–220 can pose a challenge when attempting to 
uncover underlying biological mechanisms, particularly 
in cases where thousands of variants each have a small 
effect on a trait13,221. To avoid these issues, WES and WGS 
studies are increasingly being used to discover rare var-
iants of large effect — particularly coding variants from 
exome sequencing — for which causal mechanisms 
are generally easier to elucidate87,222–224. Rare variants 
of large effect have yet to be reported for all traits and 
looking for convergence of the effects of thousands of 
variants remains the best strategy for traits not linked 
to rare variants of large effect. Further novel methods 
are needed that address polygenicity and facilitate trans-
lating the findings of GWAS into mechanistic insight. 
High polygenicity also implies that individuals with the 
same disease may have unique genetic profiles that map 
distinct biological routes towards the same disease. If 
genetic heterogeneity is also linked to treatment sensi-
tivity, the development of novel treatments should take 
this into account. However, as it is mostly unknown how 
patients should be genetically stratified, this remains an 
outstanding challenge, with treatments not yet fully  
tailored to relevant genetic profiles.

Ethical challenges
In addition to the data protection and equity issues 
discussed in the Reproducibility and data deposition 
section, GWAS raise ethical issues relating to consent 
for future use of samples and data, storage and reuse of 
samples and data, privacy challenges and sharing data 
with individual participants. Over the past decade, 
apparent consensus amongst researchers and bioeth-
icists suggests that broad and tiered consent models 
that seek permission for sample and data storage and 
unspecified future use are appropriate225–227. There is 
also apparent agreement in the research community that 
individual genetic research results that are medically 
actionable, robustly associated with the phenotype and 

Identity by descent
The property of two identical 
segments of DNA having been 
inherited from a common 
ancestor without 
recombination.

Table 3 | Databases of GWAS summary statistics

Database Content

GWAS Catalog110 GWAS summary statistics and GWAS lead SNPs reported in 
GWAS papers

GeneAtlas8 UK Biobank GWAS summary statistics

Pan UKBB UK Biobank GWAS summary statistics

GWAS Atlas273 Collection of publicly available GWAS summary statistics 
with follow- up in silico analysis

FinnGen results GWAS summary statistics released from FinnGen, a project 
that collected biological samples from many sources in 
Finland

dbGAP Public depository of National Institutes of Health- funded 
genomics data including GWAS summary statistics

OpenGWAS database GWAS summary data sets

Pheweb.jp GWAS summary statistics of Biobank Japan and 
cross- population meta- analyses

For a comprehensive list of genetic data resources, see REF.13. GWAS, genome- wide 
association studies; SNP, single- nucleotide polymorphism.
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Genome- wide association studies (GWAS) aim to iden-
tify associations of genotypes with phenotypes by testing 
for differences in the allele frequency of genetic variants 
between individuals who are ancestrally similar but dif-
fer phenotypically. GWAS can consider copy- number 
variants or sequence variations in the human genome, 
although the most commonly studied genetic variants 
in GWAS are single- nucleotide polymorphisms (SNPs). 
GWAS typically report blocks of correlated SNPs that all 
show a statistically significant association with the trait 
of interest, known as genomic risk loci. After 15 years of 
GWAS1, many replicated genomic risk loci have been 
associated with diseases and traits1, such as FTO2 for 
obesity and PTPN22 (REF.3) for autoimmune diseases.  
These results have sometimes provided hints into dis-
ease biology; for example, a GWAS implicated the  
IL-12/IL-23 pathway in the development of Crohn’s 
disease4, which supported subsequent clinical trials for 
drugs targeting the IL-12/IL-23 pathway5.

Results from GWAS can be used for a range of appli-
cations. For example, trait- associated genetic variants 
can be used as control variables in epidemiology studies 
to account for confounding genetic group differences6. 
Further, results can be used to predict an individual’s risk 
for physical and mental disease based on their genetic 
profile. Indeed, a recent study showed that genomic 
risk prediction using genome- wide polygenic risk scores 
(PRSs) for coronary artery disease, atrial fibrillation, 
type 2 diabetes, inflammatory bowel disease and breast 
cancer can identify disease risk as well as monogenic 
risk prediction strategies based on rare, highly pene-
trant mutations7. Genomic risk prediction may soon 

be allowed for clinical use as a stratification tool and a 
genetically based biomarker7.

More than 5,700 GWAS have now been conducted 
for more than 3,300 traits8 and a push for more statistical 
power has thrust GWAS sample sizes well beyond a mil-
lion participants9,10, yielding numerous associated and 
replicable variants for many heritable traits. Now that 
reliable genetic associations for various phenotypes are 
known, we are faced with the next big challenge: inter-
preting these associations in a biological and genomic 
context. Previous GWAS have shown that most traits are 
influenced by thousands of causal variants11 that indi-
vidually confer very little risk, are often associated with 
many other traits8 and are correlated with causal and 
non- causal variants that are physically close as a result 
of linkage disequilibrium12, making direct biological, causal 
inferences complicated13. Further, genetic associations 
may differ across ancestries, complicating direct compar-
isons between groups of individuals. Some of these limi-
tations hamper drawing unambiguous conclusions about 
the biological meaning of GWAS results, sometimes lim-
iting their utility to produce mechanistic insights or to 
serve as starting points for drug development1.

In this Primer, we aim to provide the reader with a 
comprehensive overview of GWAS, covering practical 
considerations, such as experimental design, robust 
data analysis and data deposition, ethical implications 
and reproducibility of results. We also provide guidance 
on how to interpret results from GWAS using several 
post- GWAS strategies and functional follow- up exper-
iments, as well as a discussion of the above- mentioned 
limitations and future challenges of GWAS.

Polygenic risk scores
(PRSs). Scores that provide  
an indication of an individual’s 
genetic liability to a trait or 
disease, calculated using an 
individual’s genome, weighted 
by effect sizes obtained from 
genome- wide association 
studies (GWAS).

Linkage disequilibrium
The non- independent 
association of two alleles  
in a population.

Genome- wide association studies
Emil Uffelmann  1, Qin Qin Huang  2, Nchangwi Syntia Munung  3, Jantina de Vries3, 
Yukinori Okada  4,5, Alicia R. Martin6,7,8, Hilary C. Martin2, Tuuli Lappalainen9,10,12 and 
Danielle Posthuma  1,11�ᅒ

Abstract | Genome- wide association studies (GWAS) test hundreds of thousands of genetic 
variants across many genomes to find those statistically associated with a specific trait or  
disease. This methodology has generated a myriad of robust associations for a range of traits  
and diseases, and the number of associated variants is expected to grow steadily as GWAS 
sample sizes increase. GWAS results have a range of applications, such as gaining insight into  
a phenotype’s underlying biology, estimating its heritability, calculating genetic correlations, 
making clinical risk predictions, informing drug development programmes and inferring potential 
causal relationships between risk factors and health outcomes. In this Primer, we provide the 
reader with an introduction to GWAS, explaining their statistical basis and how they are 
conducted, describe state- of- the art approaches and discuss limitations and challenges, 
concluding with an overview of the current and future applications for GWAS results.
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SUMMARY

Genome-wide association studies (GWASs) have enabled robust mapping of complex traits in humans. The
open sharing of GWAS summary statistics (SumStats) is essential in facilitating the larger meta-analyses
needed for increased power in resolving the genetic basis of disease. However, most GWAS SumStats are
not readily accessible because of limited sharing and a lack of defined standards. With the aim of increasing
the availability, quality, and utility of GWAS SumStats, the National Human Genome Research Institute-
European Bioinformatics Institute (NHGRI-EBI) GWAS Catalog organized a community workshop to address
the standards, infrastructure, and incentives required to promote and enable sharing. We evaluated the bar-
riers to SumStats sharing, both technological and sociological, and developed an action plan to address
those challenges and ensure that SumStats and study metadata are findable, accessible, interoperable,
and reusable (FAIR). We encourage early deposition of datasets in the GWAS Catalog as the recognized cen-
tral repository. We recommend standard requirements for reporting elements and formats for SumStats and
accompanying metadata as guidelines for community standards and a basis for submission to the GWAS
Catalog. Finally, we provide recommendations to enable, promote, and incentivize broader data sharing,
standards and FAIRness in order to advance genomic medicine.

INTRODUCTION

Genome-wide association studies (GWASs) have brought
enormous progress in mapping the genetic basis of com-
mon diseases or traits,1,2 where genetic predisposition is
shared across thousands of mostly common variants with
individually modest effects on population risk. Since 2005,3

GWASs have successfully identified thousands of genomic
regions significantly associated with common diseases,
with notable successes in type 2 diabetes (T2D)4 and coro-
nary artery disease.5 This approach was successfully
applied at the start of the coronavirus disease (COVID)
global pandemic in 2020, with newly established interna-
tional collaborations driving COVID-19 GWASs and making
all data publicly available.6 GWAS datasets are increasingly
publicly shared, and these datasets are widely used to

further basic research, as well as translation, including in
drug-discovery pipelines.7

The number of published GWASs has continually increased,
with 265 new publications in the first 6 months of 2021
compared with 209 in the same period of 2019. In addition,
the complexity and scale of the data grow. This includes the
interrogation of larger sample sizes, driven by prospective co-
horts and biobanks. Studies also increasingly include a broader
range of data types in a single publication, with deep phenotyp-
ing or health information, including newer -omic phenotypes
(e.g., lipidomic, proteomic, metabolomic, etc.).8–10 Recent pub-
lications have included GWASs of !4,000 brain-imaging
traits,11 !1,500 protein biomarkers,12 and 778 traits in the UK
Biobank (UKBB).13 Dense imputation panels have increased
the number of variants analyzed, with a typical GWAS now
including more than 8 million variants. GWAS analytical
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research or license restriction. Many of those restrictions are
participant or cohort centric and reflect an attempt to protect
research participants, for example, restrictions on attempting
to identify participants, research that may lead to stigmatizing in-
dividuals or groups, or the use of data for commercial purposes.
Attendees agreed that it would be useful to have a ‘‘recommen-
ded license,’’ which would enable reuse but protect research
participants (see Box 1, Workshop recommendations 7, ‘‘Diver-
sity and privacy’’ working group). On the other hand, some data
generators imposed investigator-centric restrictions that inher-
ently limit reuse, for example, by prohibiting redistribution.
Ways to overcome barriers for data generators who are reluctant
to share without such restrictions are discussed in more detail in
the Incentivization of sharing session section below.
We also agreed that improved linking among databases is

required, for example, linking among different datasets hosted
in different repositories for the same cohort or sample set (see
Box 1, Workshop recommendations 6).

Incentivization of sharing
The aim of this session, chaired by Orli Bahcall, was to identify
barriers to sharing of GWAS data and define strategies to over-
come those barriers, including identifying incentives for data
sharing. From her experience in working on the development
of data-sharing programs and with a broad range of GWAS pro-
ducers, she proposed that the barriers to sharing and the strate-
gies required to overcome them differ among GWAS producers
who want to share the dataset but meet challenges and those
who are reluctant to share from the outset.
Most of the challenges faced by GWAS producers who are

amenable to data sharing can be reduced or eliminated by the

Table 1. Recommended standard reporting elements for GWAS
SumStats

Data element Column header Mandatory/Optional

variant id variant_id One form of variant ID

is mandatory, either rsID

or chromosome, base pair

location, and genome builda

chromosome chromosome

base pair

location

base_pair_

location

p value p_value Mandatory

effect allele effect_allele Mandatory

other allele other_allele Mandatory

effect allele

frequency

effect_allele_

frequency

Mandatory

effect (odds

ratio or beta)

odds_ratio or

beta

Mandatory

standard error standard_error Mandatory

upper confidence

interval

ci_upper Optional

lower confidence

interval

ci_lower Optional

Data elements have been recommended as mandatory if >50% of pre-

workshop survey respondents indicated that preference.
aWe agreed that other variant ID formats should be supported. Imple-

mentation of those standards will be addressed by the working group

‘‘Data Content and Format.’’

Box 1. Workshop recommendations on sharing of GWAS sum-
mary statistics

We recommend these actions to enable broader sharing of GWAS

SumStats and to ensure that SumStats and study metadata are

FAIR. These recommendations were compiled by the organizers and

session chairs, with feedback gathered during the workshop and the

wider community in the pre-workshop survey.

1. Establish a comprehensive, central resource of GWAS
SumStats

We recommend establishing a comprehensive and sustainable

resource for all GWASs and propose that the GWASCatalog be recog-

nized as the central resource for all human GWASs.

2. Submit all GWAS SumStats to the GWAS Catalog
GWAS SumStats and supporting metadata should be submitted to

the GWAS Catalog at the time of submission of a manuscript to a

journal and/or a preprint server. Accession IDs for GWAS SumStats

should be cited in the relevant manuscript and any other relevant

material.

3. Promote or require submission to the GWAS Catalog

We call on journal editors, funders, and cohort representatives to pro-

mote or require early submission to the GWAS Catalog, pointing au-

thors to the GWAS Catalog and expecting submission before journal

submission (journal editors) or as a requirement for sample use (cohort

representatives) or funding (funders).

4. Ensure GWAS SumStats and metadata meet FAIR indica-
tors

GWAS SumStats should be made available following the FAIR indica-

tors (Table 2). These FAIR indicators will be adopted by the GWAS

Catalog.

5. Adopt a standard format and elements for GWAS Sum-
Stats

GWAS SumStats should include these standard elements: variant ID

or chromosome plus base pair location, p value, effect allele, other

allele, effect allele frequency, effects (odds ratio or beta), and standard

error (Table 1).

6. Data should be versioned and linked to relevant resources
GWAS SumStats and accompanying metadata should be versioned to

enable users to identify the most recent dataset. The GWAS Catalog

will develop a data update and versioning strategy to meet those

needs. Linking from GWAS SumStats and metadata to relevant data-

sets in other databases (e.g., dbGaP, EGA, BioData Catalyst, and

AnVIL) should be improved. The GWAS Catalog will develop improved

cross-linking to relevant databases.

Areas for further discussion:

7. Diversity and privacy
To ensure the Catalog can meet the needs of all studies, including

those with more-sensitive datasets or alternative study designs, we

will convene working groups to gather additional evidence and identify

additional functionality required. We recommend that different data-

sharing requirements be considered for datasets determined to be

sensitive, where required for privacy or regulatory reasons. We are

convening a working group to provide guidance on communicating

and mitigating the risks associated with sharing of SumStats (‘‘Diver-

sity and privacy’’ working group).

8. Data content and format
To further assess and finalize metadata content, variant identification,

and file format requirements, including for association testing with

multiple variants in a region, we are convening a working group

(‘‘Data content and format’’ working group).
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Critical information from GWAS SumStats
• SNP name/position
• Effect allele and alternate allele (A1 and A2)
• Effect allele frequency
• Marginal SNP effect
• Standard error
• P-value
• (Per-SNP) GWAS sample size

.ma file
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https://yanglab.westlake.edu.cn/soft
ware/gcta/#DataResource

Where to download the UK Biobank SumStats? 

fastGWA
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The genome-wide association study (GWAS) is a powerful 
experimental design to detect genetic variants associated with 
a phenotype of interest. Over the past decade, a number of 

statistical methods have been developed for GWAS, facilitating the 
discovery of numerous genetic variants associated with complex 
traits and diseases1,2. In the early GWAS era, the most commonly 
used approach was linear or logistic regression3–11, which is also the 
basis of most GWAS software tools12–14. Owing to the substantial 
decrease in genotyping costs in recent years, sample sizes of GWAS 
have increased dramatically to several 100,000s in single cohorts 
such as the UK Biobank (UKB)15. The large cohorts not only provide 
new opportunities to make novel discoveries but also bring chal-
lenges in computing, especially for methods based on multivariate 
models. New software tools based on LR, including PLINK2 (ref. 16) 
and BGENIE15, have been developed to accommodate the increas-
ing scale of data. Population stratification17,18 and relatedness19,20 are 
two major confounders in GWAS, which could potentially lead to 
spurious associations if not well controlled for. In an LR analysis, 
the effect of population stratification is usually accounted for by fit-
ting the first few eigenvectors (also called principal components) 
from a principal component analysis (PCA) of the SNP genotypes21 
in the model. The confounding due to relatedness can be avoided 
by excluding one member of each pair of related individuals based 
on pedigree or on SNP-derived relatedness14,22. However, this results 
in a loss of power, especially because the proportion of individuals 
with close relatives in the sample is expected to increase as biobanks 
get larger15.

The mixed linear model (MLM) approach has been widely used 
in GWAS to control for population stratification and relatedness23–36. 
The basic principle is to test for associations between each genetic 
variant and the phenotype, conditioning on the sample structure 
inferred from all of the genome-wide SNPs35. However, the run-
time of most existing MLM-based methods ranges from O(mn2) to 
O(m2n) (refs. 25,28,30,33–35), where m is the number of variants and n 

is the sample size. Several recent studies have focused on the appli-
cation of MLM-based methods to biobank-scale data37–39. Yet it is 
still resource-demanding to run MLM-based GWAS analyses with  
millions of genetic variants especially when there are a large number 
of phenotypes to be analyzed. In this study, we propose an extremely 
resource-efficient approach to perform an MLM-based GWA analy-
sis (called fastGWA), implemented in the GCTA software package22. 
We show by extensive simulations that fastGWA is robust in con-
trolling for false positive associations in the presence of population 
stratification and relatedness, and that fastGWA is approximately 
89 times faster and only requires approximately 5% of RAM com-
pared to the most efficient existing MLM-based GWAS tool in a 
data set of 400,000 individuals and 8,531,416 variants. We then 
demonstrate the utility of fastGWA by analyzing the GWAS and 
whole-exome sequence (WES) data in the UKB for >2,000 traits. 
All of the summary statistics are publicly available at our data portal  
(http://fastgwa.info).

Results
Overview of the methods. The fastGWA model can be written as:

y ¼ xsnpβsnp þ Xcβc þ gþ e ð1Þ

where y is an n × 1 vector of mean-centered phenotypes; xsnp is a 
vector of mean-centered genotype variables of a variant of interest 
with its effect βsnp; Xc is the incidence matrix of fixed covariates (for 
example, sex, age and the first few PCs) with their corresponding 
coefficients βc; g is a vector of the total genetic effects captured by 
pedigree relatedness with g ! Nð0; πσ2gÞ

I
; π is the family related-

ness matrix (FAM) based on pedigree structure40 (for example, 0.5 
for a full-sibling or parent–offspring pair); e is a vector of residu-
als with e ! Nð0; Iσ2eÞ

I
. The variance–covariance matrix of y is 

V ¼ πσ2g þ Iσ2e
I

. In practice, if pedigree information is missing  
or largely incomplete, π can be replaced by a SNP-derived genetic 

A resource-efficient tool for mixed model 
association analysis of large-scale data
Longda Jiang! !1,4, Zhili Zheng1,2,4, Ting Qi1, Kathryn E. Kemper! !1, Naomi R. Wray! !1,3, 
Peter M. Visscher! !1 and Jian Yang! !1,2*

The genome-wide association study (GWAS) has been widely used as an experimental design to detect associations between 
genetic variants and a phenotype. Two major confounding factors, population stratification and relatedness, could potentially 
lead to inflated GWAS test statistics and hence to spurious associations. Mixed linear model (MLM)-based approaches can be 
used to account for sample structure. However, genome-wide association (GWA) analyses in biobank samples such as the UK 
Biobank (UKB) often exceed the capability of most existing MLM-based tools especially if the number of traits is large. Here, 
we develop an MLM-based tool (fastGWA) that controls for population stratification by principal components and for related-
ness by a sparse genetic relationship matrix for GWA analyses of biobank-scale data. We demonstrate by extensive simulations 
that fastGWA is reliable, robust and highly resource-efficient. We then apply fastGWA to 2,173 traits on array-genotyped and 
imputed samples from 456,422 individuals and to 2,048 traits on whole-exome-sequenced samples from 46,191 individuals in 
the UKB.

NATURE GENETICS | VOL 51 | DECEMBER 2019 | 1749–1755 | www.nature.com/naturegenetics 1749
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GeneAtlas
http://geneatlas.roslin.ed.ac.uk
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Over the past decade, we have witnessed the tremendous 
growth of data from GWA studies (GWASs). For example, 
there are nearly half a million genotyped individuals with 

rich phenotypes in the UKB1, which have played a pivotal role in dis-
covering new genotype–phenotype associations in recent years2–6.  
Nevertheless, the scale of biobank data imposes great computational 
challenges on methods for GWA analysis. New methods and tools 
have been actively developed for biobank-scale data, including lin-
ear regression-based tools such as PLINK2 (ref. 7) and BGENIE1, 
and linear mixed model (LMM)-based tools such as DISSECT8, 
BOLT-LMM9 and fastGWA10. LMM-based methods are usually 
preferred over linear regression-based methods largely because 
they can account for relatedness without the need to remove related 
individuals. Despite the fact that linear regression- and LMM-based 
methods are developed under normality assumptions, they are 
often used for binary traits in practice, even though homoscedastic-
ity is not satisfied11–13. However, recent studies9,14 have shown that, 
for binary traits with low case–control ratios, test statistics from 
LMM-based methods are inflated under the null hypothesis, lead-
ing to an inflated false-positive rate (FPR), particularly for rare vari-
ants. To avoid such inflation, a common practice is to remove rare 
variants (for example, minor allele frequency (MAF) < 0.01) and 
phenotypes with highly unbalanced case–control ratios (for exam-
ple, <1:99)9,10, resulting in unnecessary loss of data.

Compared with LMM-based approaches, GLMM-based meth-
ods are better suited for binary traits14. Unfortunately, most of the 
GLMM-based GWA methods are not scalable to large biobank data. 
SAIGE14 is one of very few exceptions and is currently the most com-
monly used GLMM-based tool for biobank-scale data, because of its 
computational efficiency and well-calibrated test statistics of both 
common and rare variants for unbalanced binary traits. However, 
it is extremely computationally challenging to run SAIGE for all 
the thousands of binary traits in the UKB, more so in cohorts with 
larger sample sizes than the UKB (for example, data accumulated in 
the direct-to-consumer genetic testing companies). The main rea-
son why the performance of SAIGE is encumbered is because of the 

manipulation of full-dense n × n matrices (although not explicitly 
computed), with n being the sample size, which is both time- and 
resource-consuming.

In our previous work, we developed an LMM-based GWA tool, 
fastGWA, that is orders of magnitude faster than other LMM-based 
tools, mainly owing to the use of a sparse genomic relationship 
matrix (GRM) to capture pedigree relatedness among individu-
als10. However, when we applied fastGWA to the UKB data, we had 
to remove ~3 million variants with MAF ≤ 0.01 and ~1,000 binary 
traits with case–control ratios <1:99 to avoid the inflation in FPR 
mentioned above10. In the present study, we aimed to develop a 
GWA tool that is scalable to GWAS data with millions of individu-
als and applicable to both common and rare variants for all binary 
phenotypes, including those with highly unbalanced case–con-
trol ratios. To achieve this goal, we incorporated GLMM into the 
fastGWA framework and developed efficient sparse matrix-based 
algorithms for parameter estimation and association testing. We 
name the method fastGWA-GLMM (or fastGWA-B, to distinguish 
it from the original fastGWA method10) and have implemented it in 
the GCTA software package15. We demonstrate by simulation that 
the test statistics from fastGWA-GLMM are not inflated for either 
common or rare variants, even if the case–control ratio is extremely 
low (for example, 0.1%). We then show by analyzing subsets of the 
UKB data that fastGWA-GLMM is severalfold to orders of mag-
nitude faster than the state-of-the-art tools (for example, when 
n = 400,000, fastGWA-GLMM is 36.8-fold faster than SAIGE using 
8 CPU (central processing unit) threads). We further demonstrate 
the scalability of fastGWA-GLMM to GWAS data beyond the size of 
the UKB, based on a simulated dataset with two million individuals. 
We have applied fastGWA-GLMM to the UKB data for 2,989 binary 
traits and made the full summary statistics publicly accessible at the 
fastGWA data portal (http://fastgwa.info/ukbimpbin).

Results
Overview of the method. The fastGWA-GLMM model can be  
written as:

A generalized linear mixed model association tool 
for biobank-scale data
Longda Jiang1,2,4, Zhili Zheng1,4, Hailing Fang2,3 and Jian Yang! !1,2,3 ✉

Compared with linear mixed model-based genome-wide association (GWA) methods, generalized linear mixed model 
(GLMM)-based methods have better statistical properties when applied to binary traits but are computationally much 
slower. In the present study, leveraging efficient sparse matrix-based algorithms, we developed a GLMM-based GWA tool, 
fastGWA-GLMM, that is severalfold to orders of magnitude faster than the state-of-the-art tools when applied to the UK 
Biobank (UKB) data and scalable to cohorts with millions of individuals. We show by simulation that the fastGWA-GLMM test 
statistics of both common and rare variants are well calibrated under the null, even for traits with extreme case–control ratios. 
We applied fastGWA-GLMM to the UKB data of 456,348 individuals, 11,842,647 variants and 2,989 binary traits (full summary 
statistics available at http://fastgwa.info/ukbimpbin), and identified 259 rare variants associated with 75 traits, demonstrat-
ing the use of imputed genotype data in a large cohort to discover rare variants for binary complex traits.
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Imputed data

Whole-exome sequence data

Imputed data for binary traits

fastGWA
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Data format from fastGWA

fastGWA

Summary table (UKB_impute_v1.1.csv):

Summary statistics (100001.v1.1.fastGWA.gz):
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Data format from fastGWA-GLMM

fastGWA-GLMM

Summary table (UKB_binary_v1.1.csv):

Summary statistics (785_PheCode.v1.0.fastGWA.gz):
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GWAS catalog (https://www.ebi.ac.uk/gwas/)

• 59,946 studies

FinGenn (https://www.finngen.fi/en)

• Freeze 10: >412,000 individuals, 2,408 disease endpoints

PGC (https://pgc.unc.edu)

• Multiple waves with increasing sample sizes for psychiatric disorders

Global Biobank Engine (https://biobankengine.stanford.edu)

• > 750,000 individuals across three population cohorts: UK Biobank, Million Veterans 
Program and Biobank Japan.

Other useful data resource in the public domain
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• Meta-analysis: METAL, MTAG
• Finding independent association loci: PLINK-clumping, GCTA-COJO
• Fine-mapping causal variants: FINEMAP, SuSiE
• Exploring pleiotropic effects (PheWAS)
• Gene-based test: MAGMA, fastBAT, mBAT-combo
• Integrating with functional data: coloc, SMR, TWAS, OPERA
• Inferring trait-relevant tissues/cell types: LDSE-SEG, MAGMA-gene-set, scDRS
• Estimating SNP-based heritability: LDSC, SBayesR
• Estimating genetic correlation: Popcorn, MiXeR
• Predicting polygenic score (PGS/PRS): PRScie, LDpred2, PRScs, SBayesR
• Inferring causal relationship between traits: GSMR, LCV
• …  

What can we do with them?
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Linkage disequilibrium (LD) correlations
Usually obtained from a reference population
LD correlation matrix

𝐑 = !
"
𝐗′𝐗 

assuming 𝐗 is standardised 
with mean zero and 
variance one
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Match in ancestry

LD reference needs to match with GWAS sample in genetics
• No systematic differences in LD à same ancestry and population structure

• Minimum sampling variance in LD à LD ref sample size cannot be too small

PERSPECTIVE NATURE GENETICS

and heterogeneity of sub-phenotypes among countries must also be 
considered.

Differences in environmental exposure, gene–gene interactions, 
gene–environment interactions, historical population-size dynam-
ics, statistical noise, some potential causal effect differences and/or 
other factors further limit the generalizability of PRS in an unpre-
dictable, trait-specific fashion46–49. Complex traits do not behave in 
a genetically deterministic manner: some environmental factors 
dwarf individual genetic effects, thus creating outsized issues of 
comparability across globally diverse populations. Among psychi-
atric disorders, for example, schizophrenia has a nearly identical 
genetic basis across East Asians and Europeans (rg = 0.98) (ref. 40),  
whereas the substantially different rates of alcohol-use disorder 
across populations are partially explained by differences in avail-
ability and genetic differences affecting alcohol metabolism50. 
Although nonlinear genetic factors explain little variation in com-
plex traits beyond a purely additive model51, some unrecognized 
nonlinearities and gene–gene interactions can also induce chal-
lenges to genetic-risk prediction, because pairwise interactions 
are likely to vary more across populations than individual SNPs. 
Mathematically, this scenario can simplistically be considered in 
terms of a two-SNP model, in which the sum of two SNP effects 
is likely to explain more phenotypic variance than the product of 
the same SNPs. Some machine-learning approaches may thus mod-
estly improve PRS accuracy beyond current approaches for some 
phenotypes52, but improvement is most likely for atypical traits with 
simpler architectures, known interactions and poor prediction gen-
eralizability across populations, such as skin pigmentation53.

Limited generalizability of PRS across diverse populations
To date, multi-ancestral work has been slow in most disease areas54, 
thus limiting even the opportunity to assess PRS in non-European 
cohorts. Nonetheless, some previous work has assessed prediction 
accuracy across diverse populations in several traits and diseases 
for which GWAS summary statistics are available and has identified 

large disparities across populations (Supplementary Note). These 
disparities are not simply methodological issues, because various 
approaches (for example, pruning and thresholding versus LDPred) 
and accuracy metrics (R2 for quantitative traits and various pseudo-
R2 metrics for binary traits) illustrate this consistently poorer per-
formance in populations distinct from discovery samples across a 
range of polygenic traits (Supplementary Table 1). These assess-
ments are becoming increasingly feasible with the growth and pub-
lic availability of global biobanks as well as diversifying priorities 
from funding agencies55,56. We assessed how prediction accuracy 
decayed across globally diverse populations for 17 anthropometric 
and blood-panel traits in the UK Biobank (UKBB) when European-
derived summary statistics were used (Supplementary Note). In 
agreement with findings from previous studies, we found that the 
genetic prediction accuracy was far lower for other populations 
than for European populations: 1.6-fold lower in Hispanic/Latino 
Americans, 1.6-fold lower in South Asians, 2.0-fold lower in East 
Asians and 4.5-fold lower in Africans, on average (Fig. 3).

Prioritizing diversity shows early promise for PRS
Early diversifying GWAS efforts have been especially productive 
in addressing questions surrounding risk prediction. Rather than 
varying the prediction target dataset, some GWAS in diverse popu-
lations have increased the scale of non-European summary statistics 
and also varied the study dataset in multi-ancestral PRS studies23,24,40. 
These studies have shown that even when non-European cohorts 
are only a fraction of the size of the largest European study, they are 
likely to have disproportionate value for predicting polygenic traits 
in other individuals of similar ancestry.

Given this background, we performed a systematic evaluation 
of polygenic prediction accuracy across 17 quantitative anthropo-
metric and blood-panel traits and five disease endpoints in British 
and Japanese individuals23,57,58 by performing GWAS with the exact 
same sample sizes in each population. We symmetrically demon-
strate that prediction accuracy is consistently higher with GWAS 
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Fig. 2 | Demographic relationships, allele frequency differences and local LD patterns between population pairs. Data analyzed from 1000 Genomes. 
Population labels: AFR, continental African; EUR, European; EAS, East Asian. a, Cartoon relationships among AFR, EUR and EAS populations. b, Allele 
frequency distributions in AFR, EUR and EAS populations of variants from the GWAS catalog. c–e, Color axis shows LD scale (r2) for the indicated LD 
comparisons between pairs of populations; the same region of the genome for each comparison (representative region is chromosome 1, 51572–52857 
kilobases) among pairs of SNPs polymorphic in both populations is shown, illustrating that different SNPs are polymorphic across some population pairs 
and that these SNPs have variable LD patterns across populations.
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1000 Genomes Project (1KGP)
Individual sequence data
https://www.internationalgen
ome.org

Where to find LD reference data?

UK Biobank (UKB)
We provide LD matrices computed from a 
subset of UKB samples
https://cnsgenomics.com/software/gctb/
#LDmatrices
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Individual-data model

𝐲 = 𝐗𝜷 + 𝐞 𝐛 = 𝐑𝜷 + 𝛜
A primary tool - genome-wide association studies (GWAS)

Simple linear regression model

Yi = —0 + —1Xi + Ái ,

i = 1, . . . , n, where n is the number of individuals and Xi contains
the reference allele count for individual i . Estimate —0 and —1 via
least squares. Perform this p times for all the genotyped SNPs in
the population

Summary-data model

Can we use summary statistics and why?

11. Ripke, S. et al. Genome-wide association analysis identifies 13 new risk loci for
schizophrenia. Nature Genet. 45, 1150–1159 (2013).

12. Ikeda, M. et al. Genome-wide association study of schizophrenia in a Japanese
population. Biol. Psychiatry 69, 472–478 (2011).

13. Hamshere, M. L. et al. Genome-wide significant associations in schizophrenia to
ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations
reported by the Schizophrenia PGC. Mol. Psychiatry 18, 708–712 (2013).

14. O’Donovan, M. C. et al. Identification of novel schizophrenia loci by genome-wide
association and follow-up. Nature Genet. 40, 1053–1055 (2008).

15. Rietschel, M. et al. Association between genetic variation in a region on
chromosome 11 and schizophrenia in large samples from Europe. Mol. Psychiatry
17, 906–917 (2012).

16. Schizophrenia Psychiatric Genome-Wide Association Study Consortium.
Genome-wide association study identifies five new schizophrenia loci. Nature
Genet. 43, 969–976 (2011).

17. Irish Schizophrenia Genomics Consortium & Wellcome Trust Case Control
Consortium. Genome-wide association study implicates HLA-C*01:02 as a risk
factor at the major histocompatibility complex locus in schizophrenia. Biol.
Psychiatry 72, 620–628 (2012).

18. Shi, J. et al. Common variants on chromosome 6p22.1 are associated with
schizophrenia. Nature 460, 753–757 (2009).

19. Shi, Y. et al. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia.
Nature Genet. 43, 1224–1227 (2011).

20. Stefansson, H. et al. Common variants conferring risk of schizophrenia. Nature
460, 744–747 (2009).

21. Steinberg, S. et al. Common variants at VRK2 and TCF4 conferring risk of
schizophrenia. Hum. Mol. Genet. 20, 4076–4081 (2011).

22. Yue, W. H. et al. Genome-wide association study identifies a susceptibility locus for
schizophrenia in Han Chinese at 11p11.2. Nature Genet. 43, 1228–1231 (2011).

23. Lencz, T. et al. Genome-wide association study implicates NDST3 in schizophrenia
and bipolar disorder. Nature Commun. 4, 2739 (2013).

24. Psychiatric GWAS Consortium. A framework for interpreting genomewide
association studies of psychiatric disorders. Mol. Psychiatry 14, 10–17 (2009).

25. The 1000 Genomes Project Consortium. A map of human genome variation from
population-scale sequencing. Nature 467, 1061–1073 (2010).

26. Begum, F., Ghosh, D., Tseng, G. C. & Feingold, E. Comprehensive literature review
and statistical considerations for GWAS meta-analysis. Nucleic Acids Res. 40,
3777–3784 (2012).

27. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological
pathways affect human height. Nature 467, 832–838 (2010).

28. Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of
inflammatory bowel disease. Nature 491, 119–124 (2012).

29. Yang, J. et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum.
Genet. 19, 807–812 (2011).

30. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from
polygenicity in genome-wide association studies. Preprint at http://dx.doi.org/
10.1101/002931 (2014).

31. Ferreira, M. A. et al. Collaborative genome-wide association supports a role for
ANK3 and CACNA1C in bipolar disorder. Nature Genet. 40, 1056–1058 (2008).

32. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of
risk loci with shared effects on five major psychiatric disorders: a genome-wide
analysis. Lancet 381, 1371–1379 (2013).

33. Purcell, S. M. et al. A polygenic burden of rare disruptive mutations in
schizophrenia. Nature 506, 185–190 (2014).

34. Fromer, M. et al. De novo mutations in schizophrenia implicate synaptic networks.
Nature 506, 179–184 (2014).

35. Kirov, G. et al. De novo CNV analysis implicates specific abnormalities of
postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol.
Psychiatry 17, 142–153 (2012).

36. Wellcome Trust Case Control Consortium Bayesian refinement of association
signals for 14 loci in 3 common diseases. Nature Genet. 44, 1294–1301 (2012).

37. Nicolae, D. L.et al.Trait-associatedSNPs are more likely to beeQTLs: annotation to
enhance discovery from GWAS. PLoS Genet. 6, e1000888 (2010).

38. Maurano, M. T. et al. Systematic localization of common disease-associated
variation in regulatory DNA. Science 337, 1190–1195 (2012).

39. Richards, A. L. et al.Schizophrenia susceptibility alleles are enriched for alleles that
affect gene expression in adult human brain. Mol. Psychiatry 17, 193–201 (2012).

40. Wright, F. A. et al. Heritability and genomics of gene expression in peripheral blood.
Nature Genet. 46, 430–437 (2014).

41. Doyle, J. P. et al. Application of a translational profiling approach for the
comparative analysis of CNS cell types. Cell 135, 749–762 (2008).

42. Tkachev, D. et al. Oligodendrocyte dysfunction in schizophrenia and bipolar
disorder. Lancet 362, 798–805 (2003).

43. Benros,M. E., Mortensen, P.B.& Eaton, W.W. Autoimmune diseasesand infections
as risk factors for schizophrenia. Ann. NY Acad. Sci. 1262, 56–66 (2012).

44. Holmans, P. et al. Gene ontology analysis of GWA study data sets provides insights
into the biology of bipolar disorder. Am. J. Hum. Genet. 85, 13–24 (2009).

45. Lee, P. H., O’Dushlaine, C., Thomas, B. & Purcell, S. InRich: interval-based
enrichment analysis for genome-wide association studies. Bioinformatics 28,
1797–1799 (2012).

46. Lee, S. H., Goddard, M. E., Wray, N. R. & Visscher, P. M. A better coefficient of
determination for genetic profile analysis. Genet. Epidemiol. 36, 214–224 (2012).

47. Gottesman, I. I. & Gould, T. D. The endophenotype concept in psychiatry:
etymology and strategic intentions. Am. J. Psychiatry 160, 636–645 (2003).

48. Insel, T. et al. Research domain criteria (RDoC): toward a new classification
framework for research on mental disorders. Am. J. Psychiatry 167, 748–751
(2010).

Supplementary Information is available in the online version of the paper.

AcknowledgementsCore funding for thePsychiatricGenomicsConsortium is fromthe
US National Institute of Mental Health (U01 MH094421). We thank T. Lehner (NIMH).
The work of the contributing groups was supported by numerous grants from
governmental and charitable bodies as well as philanthropic donation. Details are
provided in theSupplementary Notes.Membershipof theWellcomeTrustCaseControl
Consortium and of the Psychosis Endophenotype International Consortium are
provided in the Supplementary Notes.

Author Contributions The individual studies or consortia contributing to the GWAS
meta-analysiswere ledbyR.A.,O.A.A., D.H.R.B., A.D.B., E.Bramon, J.D.B., A.C., D.A.C., S.C.,
A.D., E. Domenici, H.E., T.E., P.V.G., M.G., H.G., C.M.H., N.I., A.V.J., E.G.J., K.S.K., G.K., J.
Knight, T. Lencz, D.F.L., Q.S.L., J. Liu, A.K.M., S.A.M., A. McQuillin, J.L.M., P.B.M., B.J.M.,
M.M.N., M.C.O’D., R.A.O., M.J.O., A. Palotie, C.N.P., T.L.P., M.R., B.P.R., D.R., P.C.S, P. Sklar.
D.St.C., P.F.S., D.R.W., J.R.W., J.T.R.W. and T.W. Together with the core statistical analysis
group led by M.J.D. comprising S.R., B.M.N. and P.A.H., this group comprised the
management group led by M.C.O’D. who were responsible for the management of the
study and the overall content of the manuscript. Additional analyses and
interpretations were contributed by E.A., B.B.-S., D.K., K.-H.F., M. Fromer, H.H., P.L.,
P.B.M., S.M.P., T.H.P., N.R.W. and P.M.V. The phenotype supervisory group comprised
A.C., A.H.F., P.V.G., K.K.K. and B.J.M. D.A.C. led the candidate selected genes subgroup
comprised of M.J.D., E. Dominici, J.A.K., A.M.H., M.C.O’D, B.P.R., D.R., E.M.S. and P. Sklar.
Replication results were provided by S.S., H.S. and K.S. The remaining authors
contributed to the recruitment, genotyping, or data processing for the contributing
components of the meta-analysis. A.C., M.J.D., B.M.N., S.R., P.F.S. and M.C.O’D. took
responsibility for the primary drafting of the manuscript which was shaped by the
management group. All other authors saw, had the opportunity to comment on, and
approved the final draft.

Author Information Results can be downloaded from the Psychiatric Genomics
Consortium website (http://pgc.unc.edu) and visualized using Ricopili (http://
www.broadinstitute.org/mpg/ricopili). Genotype data for the samples where the ethics
permit deposition are available upon application from the NIMH Genetics Repository
(https://www.nimhgenetics.org). Reprints and permissions information is available at
www.nature.com/reprints. The authors declare competing financial interests: details
are available in the online version of the paper. Readers are welcome to comment on
the online version of the paper. Correspondence and requests for materials should be
addressed to to M.C.O’D. (odonovanmc@cardiff.ac.uk).

Schizophrenia Working Group of the Psychiatric Genomics Consortium

Stephan Ripke1,2, Benjamin M. Neale1,2,3,4, Aiden Corvin5, James T. R. Walters6,
Kai-How Farh1, Peter A. Holmans6,7, Phil Lee1,2,4, Brendan Bulik-Sullivan1,2, David A.
Collier8,9, Hailiang Huang1,3, Tune H. Pers3,10,11, Ingrid Agartz12,13,14, Esben
Agerbo15,16,17, Margot Albus18, Madeline Alexander19, Farooq Amin20,21, Silviu A.
Bacanu22, Martin Begemann23, Richard A. Belliveau Jr2, Judit Bene24,25, Sarah E.
Bergen2,26, Elizabeth Bevilacqua2, Tim B. Bigdeli22, Donald W. Black27, Richard
Bruggeman28, Nancy G. Buccola29, Randy L. Buckner30,31,32, William Byerley33,
Wiepke Cahn34, Guiqing Cai35,36, Dominique Campion37, Rita M. Cantor38, Vaughan J.
Carr39,40, Noa Carrera6, Stanley V. Catts39,41, Kimberly D. Chambert2, Raymond C. K.
Chan42, Ronald Y. L. Chen43, Eric Y. H. Chen43,44, Wei Cheng45, Eric F. C. Cheung46,
Siow Ann Chong47, C. Robert Cloninger48, David Cohen49, Nadine Cohen50, Paul
Cormican5, Nick Craddock6,7, James J. Crowley51, David Curtis52,53, Michael
Davidson54, Kenneth L. Davis36, Franziska Degenhardt55,56, Jurgen Del Favero57, Ditte
Demontis17,58,59, Dimitris Dikeos60, Timothy Dinan61, Srdjan Djurovic14,62, Gary
Donohoe5,63, Elodie Drapeau36, Jubao Duan64,65, Frank Dudbridge66, Naser
Durmishi67, Peter Eichhammer68, Johan Eriksson69,70,71, Valentina Escott-Price6,
Laurent Essioux72, Ayman H. Fanous73,74,75,76, Martilias S. Farrell51, Josef Frank77,
Lude Franke78, Robert Freedman79, Nelson B. Freimer80, Marion Friedl81, Joseph I.
Friedman36, Menachem Fromer1,2,4,82, Giulio Genovese2, Lyudmila Georgieva6, Ina
Giegling81,83, Paola Giusti-Rodrı́guez51, Stephanie Godard84, Jacqueline I.
Goldstein1,3, Vera Golimbet85, Srihari Gopal86, Jacob Gratten87, Lieuwe de Haan88,
Christian Hammer23, Marian L. Hamshere6, Mark Hansen89, Thomas Hansen17,90,
Vahram Haroutunian36,91,92, Annette M. Hartmann81, Frans A. Henskens39,93,94,
Stefan Herms55,56,95, Joel N. Hirschhorn3,11,96, Per Hoffmann55,56,95, Andrea
Hofman55,56, Mads V. Hollegaard97, David M. Hougaard97, Masashi Ikeda98, Inge
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Lönnqvist122, Milan Macek Jr112, Patrik K. E. Magnusson26, Brion S. Maher123,
Wolfgang Maier124, Jacques Mallet125, Sara Marsal100, Manuel Mattheisen17,58,59,126,
Morten Mattingsdal14,127, Robert W. McCarley128,129, Colm McDonald130, Andrew M.
McIntosh131,132, Sandra Meier77, Carin J. Meijer88, Bela Melegh24,25, Ingrid
Melle14,133, Raquelle I. Mesholam-Gately128,134, Andres Metspalu135, Patricia T.
Michie39,136, Lili Milani135, Vihra Milanova137, Younes Mokrab8, Derek W. Morris5,63,
Ole Mors17,58,138, Kieran C. Murphy139, Robin M. Murray140, Inez Myin-Germeys141,
Bertram Müller-Myhsok142,143,144, Mari Nelis135, Igor Nenadic145, Deborah A.
Nertney146, Gerald Nestadt147, Kristin K. Nicodemus148, Liene Nikitina-Zake109, Laura
Nisenbaum149, Annelie Nordin150, Eadbhard O’Callaghan151, Colm O’Dushlaine2, F.
Anthony O’Neill152, Sang-Yun Oh153, Ann Olincy79, Line Olsen17,90, Jim Van Os141,154,
Psychosis Endophenotypes International Consortium155, Christos Pantelis39,156,

ARTICLE RESEARCH

2 4 J U L Y 2 0 1 4 | V O L 5 1 1 | N A T U R E | 4 2 5

Macmillan Publishers Limited. All rights reserved©2014

George N. Papadimitriou60, Sergi Papiol23, Elena Parkhomenko36, Michele T. Pato110,
Tiina Paunio157,158, Milica Pejovic-Milovancevic159, Diana O. Perkins160, Olli
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Nöthen55,56, Roel A. Ophoff38,80,34, Michael J. Owen6,7, Aarno Palotie2,4,161, Carlos N.
Pato110, Tracey L. Petryshen2,128,202, Danielle Posthuma203,204,205, Marcella
Rietschel77, Brien P. Riley196, Dan Rujescu81,83, Pak C. Sham43,44,116, Pamela
Sklar82,91,165, David St Clair206, Daniel R. Weinberger178,207, Jens R. Wendland166,
Thomas Werge17,90,208, Mark J. Daly1,2,3, Patrick F. Sullivan26,51,160 & Michael C.
O’Donovan6,7

1Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston,
Massachusetts 02114, USA. 2Stanley Center for Psychiatric Research, Broad Institute of
MIT and Harvard, Cambridge, Massachusetts 02142, USA. 3Medical and Population
Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
02142, USA. 4Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts
General Hospital, Boston, Massachusetts 02114, USA. 5Neuropsychiatric Genetics
Research Group, Department of Psychiatry, Trinity College Dublin, Dublin 8, Ireland.
6MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological
Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF24
4HQ, UK. 7NationalCentre for MentalHealth, Cardiff University, Cardiff CF244HQ, UK. 8Eli
Lilly and Company Limited, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey
GU20 6PH, UK. 9Social, Genetic and Developmental Psychiatry Centre, Institute of
Psychiatry, King’s College London, LondonSE5 8AF,UK. 10Center for Biological Sequence
Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800,
Denmark. 11Division of Endocrinology and Center for Basic and Translational Obesity
Research, Boston Children’s Hospital, Boston, Massachusetts02115, USA. 12Department
of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, SE-17176 Stockholm,
Sweden. 13Department of Psychiatry, Diakonhjemmet Hospital, 0319 Oslo, Norway.
14NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine,
University of Oslo, 0424 Oslo, Norway. 15Centre for Integrative Register-based Research,
CIRRAU, Aarhus University, DK-8210 Aarhus, Denmark. 16National Centre for
Register-basedResearch, AarhusUniversity,DK-8210Aarhus,Denmark. 17The Lundbeck
Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark. 18State
Mental Hospital, 85540 Haar, Germany. 19Department of Psychiatry and Behavioral
Sciences, Stanford University, Stanford, California 94305, USA. 20Department of
Psychiatry and Behavioral Sciences, Atlanta Veterans Affairs Medical Center, Atlanta,
Georgia 30033, USA. 21Department of Psychiatry and Behavioral Sciences, Emory
University, Atlanta,Georgia30322,USA. 22Virginia Institute forPsychiatric and Behavioral
Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond,
Virginia 23298, USA. 23Clinical Neuroscience, Max Planck Institute of Experimental
Medicine, Göttingen 37075, Germany. 24Department of Medical Genetics, University of
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H-7624, Hungary. 26Department of Medical Epidemiology and Biostatistics, Karolinska
Institutet, Stockholm SE-17177, Sweden. 27Department of Psychiatry, University of Iowa
Carver College of Medicine, Iowa City, Iowa 52242, USA. 28University Medical Center
Groningen, Department of Psychiatry, University of Groningen NL-9700 RB, The
Netherlands. 29School ofNursing, LouisianaStateUniversity HealthSciencesCenter,New
Orleans, Louisiana 70112, USA. 30Athinoula A. Martinos Center, Massachusetts General
Hospital, Boston, Massachusetts 02129, USA. 31Center for Brain Science, Harvard
University, Cambridge, Massachusetts 02138, USA. 32Department of Psychiatry,
Massachusetts General Hospital, Boston, Massachusetts 02114, USA. 33Department of
Psychiatry, University of California at San Francisco, San Francisco, California 94143,
USA. 34University Medical Center Utrecht, Department of Psychiatry, Rudolf Magnus
Institute of Neuroscience, 3584 Utrecht, The Netherlands. 35Department of Human
Genetics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
36DepartmentofPsychiatry, IcahnSchool ofMedicineatMount Sinai,New York,New York
10029, USA. 37Centre Hospitalier du Rouvray and INSERM U1079 Faculty of Medicine,
76301 Rouen, France. 38Department of Human Genetics, David Geffen School of
Medicine, University of California, Los Angeles, California 90095, USA. 39Schizophrenia
Research Institute,SydneyNSW2010,Australia. 40SchoolofPsychiatry,University ofNew

South Wales, Sydney NSW 2031, Australia. 41Royal Brisbane and Women’s Hospital,
University of Queensland, Brisbane, St Lucia QLD 4072, Australia. 42Institute of
Psychology, Chinese Academy of Science, Beijing 100101, China. 43Department of
Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong,
China. 44State Key Laboratory for Brain and Cognitive Sciences, Li Ka Shing Faculty of
Medicine, The University of Hong Kong, Hong Kong, China. 45Department of Computer
Science, University of North Carolina, Chapel Hill, North Carolina 27514, USA. 46Castle
Peak Hospital, Hong Kong, China. 47Institute of Mental Health, Singapore 539747,
Singapore. 48Department ofPsychiatry, WashingtonUniversity,St. Louis,Missouri 63110,
USA. 49Department of Child and Adolescent Psychiatry, Assistance Publique Hopitaux de
Paris, Pierre and Marie Curie Faculty of Medicine and Institute for Intelligent Systems and
Robotics, Paris 75013, France. 50Blue Note Biosciences, Princeton, New Jersey 08540,
USA 51Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
27599-7264, USA. 52Department of Psychological Medicine, Queen Mary University of
London, London E1 1BB, UK. 53Molecular Psychiatry Laboratory, Division of Psychiatry,
University CollegeLondon, LondonWC1E6JJ,UK. 54ShebaMedicalCenter, Tel Hashomer
52621, Israel. 55Department of Genomics, Life and Brain Center, D-53127 Bonn,
Germany. 56Institute of Human Genetics, University of Bonn, D-53127 Bonn, Germany.
57Applied Molecular Genomics Unit, VIB Department of Molecular Genetics, University of
Antwerp, B-2610 Antwerp, Belgium. 58Centre for Integrative Sequencing, iSEQ, Aarhus
University, DK-8000 Aarhus C, Denmark. 59Department of Biomedicine, Aarhus
University, DK-8000 Aarhus C, Denmark. 60First Department of Psychiatry, University of
Athens Medical School, Athens 11528, Greece. 61Department of Psychiatry, University
College Cork, Co. Cork, Ireland. 62Department of Medical Genetics, Oslo University
Hospital, 0424 Oslo, Norway. 63Cognitive Genetics and Therapy Group, School of
Psychology and Discipline of Biochemistry, National University of Ireland Galway, Co.
Galway, Ireland. 64Department of Psychiatry and Behavioral Neuroscience, University of
Chicago, Chicago, Illinois 60637, USA. 65Department of Psychiatry and Behavioral
Sciences, NorthShore University HealthSystem, Evanston, Illinois 60201, USA.
66Department of Non-Communicable Disease Epidemiology, London School of Hygiene
and Tropical Medicine, London WC1E 7HT, UK. 67Department of Child and Adolescent
Psychiatry, University Clinic of Psychiatry, Skopje 1000, Republic of Macedonia.
68Department of Psychiatry, University of Regensburg, 93053 Regensburg, Germany.
69Department of General Practice, Helsinki University Central Hospital, University of
Helsinki P.O. Box 20, Tukholmankatu 8 B, FI-00014, Helsinki, Finland 70Folkhälsan
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Biological insights from 108
schizophrenia-associated genetic loci
Schizophrenia Working Group of the Psychiatric Genomics Consortium*

Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common
alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizo-
phrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent asso-
ciations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been
previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for
the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at DRD2
and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic
relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed
in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing
support for the speculated link between the immune system and schizophrenia.

Schizophrenia has a lifetime risk of around 1%, and is associated with
substantial morbidity and mortality as well as personal and societal costs1–3.
Although pharmacological treatments are available for schizophrenia,
their efficacy is poor for many patients4. All available antipsychotic drugs
are thought to exert their main therapeutic effects through blockade of
the type 2 dopaminergic receptor5,6 but, since the discovery of this mech-
anism over 60 years ago, no new antipsychotic drug of proven efficacy
has been developed based on other target molecules. Therapeutic stasis
is in large part a consequence of the fact that the pathophysiology of
schizophrenia is unknown. Identifying the causes of schizophrenia is
therefore a critical step towards improving treatments and outcomes
for those with the disorder.

High heritability points to a major role for inherited genetic variants
in the aetiology of schizophrenia7,8. Although risk variants range in fre-
quency from common to extremely rare9, estimates10,11 suggest half to a
third of the genetic risk of schizophrenia is indexed by common alleles
genotyped by current genome-wide association study (GWAS) arrays.
Thus, GWAS is potentially an important tool for understanding the
biological underpinnings of schizophrenia.

To date, around 30 schizophrenia-associated loci10–23 have been iden-
tified through GWAS. Postulating that sample size is one of the most
important limiting factors in applying GWAS to schizophrenia, we created
the Schizophrenia Working Group of the Psychiatric Genomics Con-
sortium (PGC). Our primary aim was to combine all available schizo-
phrenia samples with published or unpublished GWAS genotypes into
a single, systematic analysis24. Here we report the results of that analysis,
including at least 108 independent genomic loci that exceed genome-
wide significance. Some of the findings support leading pathophysio-
logical hypotheses of schizophrenia or targets of therapeutic relevance,
but most of the findings provide new insights.

108 independent associated loci
We obtained genome-wide genotype data from which we constructed 49
ancestry matched, non-overlapping case-control samples (46 of European
and three of east Asian ancestry, 34,241 cases and 45,604 controls) and
3 family-based samples of European ancestry (1,235 parent affected-
offspring trios) (Supplementary Table 1 and Supplementary Methods).

These comprise the primary PGC GWAS data set. We processed the
genotypes from all studies using unified quality control procedures fol-
lowed by imputation of SNPs and insertion-deletions using the 1000
Genomes Project reference panel25. In each sample, association testing
was conducted using imputed marker dosages and principal components
(PCs) to control for population stratification. The results were combined
using an inverse-variance weighted fixed effects model26. After quality
control (imputation INFO score $ 0.6, MAF $ 0.01, and successfully
imputed in $ 20 samples), we considered around 9.5 million variants.
The results are summarized in Fig. 1. To enable acquisition of large sam-
ples, some groups ascertained cases via clinician diagnosis rather than a
research-based assessment and provided evidence of the validity of this
approach (Supplementary Information)11,13. Post hoc analyses revealed
the pattern of effect sizes for associated loci was similar across different
assessment methods and modes of ascertainment (Extended Data Fig. 1),
supporting our a priori decision to include samples of this nature.

For the subset of linkage-disequilibrium-independent single nucleotide
polymorphisms (SNPs) with P , 1 3 1026 in the meta-analysis, we next
obtained results from deCODE genetics (1,513 cases and 66,236 controls
of European ancestry). We define linkage-disequilibrium-independent
SNPs as those with low linkage disequilibrium (r2 , 0.1) to a more sig-
nificantly associated SNP within a 500-kb window. Given high linkage
disequilibrium in the extended major histocompatibility complex (MHC)
region spans ,8 Mb, we conservatively include only a single MHC SNP
to represent this locus. The deCODE data were then combined with those
from the primary GWAS to give a data set of 36,989 cases and 113,075
controls. In this final analysis, 128 linkage-disequilibrium-independent
SNPs exceeded genome-wide significance (P # 5 3 1028) (Supplemen-
tary Table 2).

As in meta-analyses of other complex traits which identified large num-
bers of common risk variants27,28, the test statistic distribution from our
GWAS deviates from the null (Extended Data Fig. 2). This is consistent
withthe previouslydocumentedpolygeniccontributiontoschizophrenia10,11.
The deviation in the test statistics from the null (lGC 5 1.47,l1000 5 1.01)
is only slightly less than expected (lGC 5 1.56) under a polygenic model
given fully informative genotypes, the current sample size, and the life-
time risk and heritability of schizophrenia29.

*A list of authors and affiliations appears at the end of the paper.
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I Results generated from a meta-analysis of 52 individual GWAS datasets
I Individual level analysis di�cult due to consent and privacy issues and data

ownership. Technical burden of data transfer, storage, management and
harmonisation

I Consortia often share and make publicly available {‚—j ,‚‡2
j , qj , nj}, where qj and

nj is the allele frequency and individual count (missing genotypes) for each
variant respectively

à

The key is that 𝑏! 	=
"
#
𝐗!$𝐲 where 𝐗!$𝐲 is the sufficient statistic for many analyses.



CRICOS code 00025B

Convert to correct format and filter/impute missing data.Some data field has NA and is non-numeric.Incorrect data field 
format.

Check publication/ReadMe file. Some methods require
total sample size, while some requires effective sample size. 

Missing data. Separate values in cases and 
controls.

Sample size (N)

SE = b/Z if b is provided,
or 𝑆𝐸 = 1/ 2𝑝 (1 − 𝑝)(𝑁 + 𝑍 2) given unit variance.

Missing data.Standard error (SE)

b = Z/SE if SE is provided, 
or 𝑏 = 𝑍/ 2𝑝 (1 − 𝑝)(𝑁 + 𝑍 2) given unit variance.
b = log(OR).

Provided data are Z-score or odds ratio (OR).Marginal effect (b)

Use data from LD reference. 
Impute by summary data 2𝑝𝑞 = 1/(𝑁 ∗ 𝑆𝐸 + 𝑁 ∗ 𝑏2).
Compute 𝑝 = 𝑁𝑐𝑎𝑠𝑒 𝑝𝑐𝑎𝑠𝑒 +𝑁𝑐𝑡𝑟𝑙 𝑝 𝑐𝑡𝑟𝑙

𝑁𝑐𝑎𝑠𝑒 +𝑁𝑐𝑡𝑟𝑙
.

Missing data. Provided data are minor allele 
frequency (MAF). Separate values in cases and 
controls.

Effect allele frequency 
(p)

Check ReadMe file. Check if the predictor is 
negatively correlated with the phenotype. 

Lower/upper case.
Unknown effect allele (A1/A2, REF/ALT).

Alleles

Use chromosome and position information to find 
their rsID (from LD reference file).

rsID not provided.SNP ID

Lift up to the same genome build using liftoverInconsistent coordinates among GWAS summary 
data and LD reference.

Genome build
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For SBayes, we recommend using the total sample size. Total sample size (Ncase + Nctrl) or effective
sample size - which one to use?

Sample size for disease

Visualise the distribution. Remove long tail/minor mode/
outliers, e.g., > 3*SD. 
Impute N = 1/(2pq(SE+b2)) if necessary.

Dispersed/skewed/multimodal distribution. 
Only overall sample size provided in meta-
analysis. 

Variable per-SNP sample sizes 

Choose a better LD reference.
Remove SNPs with LD heterogeneity (DENTIST).

LD reference does not match LD in the 
GWAS sample.

LD differences

Remove SNPs with large difference, e.g., > 0.2.Large differences between GWAS and LD 
reference data.

Allele frequency differences

Flip the alleles in GWAS and take the opposite sign 
of the marginal effect size.

Discordant alleles between data sets, 
e.g., A/T in GWAS but T/A in LD reference.

Allele discordance

For applications requiring a perfect match, filter 
SNPs or impute their marginal effects (e.g., ImpG). 

SNPs in GWAS are missing in the LD 
reference, or in reverse.

Mismatched SNPs

Impute the missing data or remove SNPs.Some SNPs have missing data.Missing data

17

What should we check prior to the analysis? (cont’)
Quality control (QC)

How to fix?What could be wrong?Item



CRICOS code 00025B

Heterogeneity in per-SNP sample size
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Applications and Evaluations of PRS

To demonstrate why there is considerable discussion about imple-
mentation of PRS into health systems, we consider the application
in cardiovascular medicine because it was highlighted22 that PRS pro-
vide a level of predictive information that can be considered similar
to the risk of specific single rare variants that are currently clinically
actionable. In standard practice, the detection of such rare variants
(often investigated in families that have multiple affected individu-
als) can lead to changes in clinical management (eg, surveillance or
prophylactic measures).22 In this retrospective study, it was shown
that those in the top 1% of cardiovascular PRS had lifetime risk of
greater than 10%, which is equivalent to the risk faced by those car-
rying single rare genetic variants that, when detected, can inform
changes in clinical management. On the flip side, approximately 90%
of people in this top 1% would not go on to have heart disease, but
encouraging this subgroup of the population to consider preven-
tion strategies could be worthwhile in reducing risk. Use of risk in-
formation in this way is sometimes referred to as precision preven-
tion genomics, where the precision focus is a population stratum.

Risk prediction for heart disease is already well established
around the world.23-25 These predictors can be found in online tools
and combine information associated with clinical risk factors, such
as sex, age, blood pressure, smoking status, family history of car-
diovascular disease, total and high-density lipoprotein cholesterol,
diabetes, and electrocardiogram measures, into a total risk score.
None of the individual contributing factors is a useful risk predictor
alone, but the combination of factors is used to inform prescription
of statins and other lifestyle preventive interventions. Another
study26 using prospective, longitudinal data from the UK Biobank26

showed that while coronary artery disease PRS were a less accu-
rate predictor of a subsequent coronary artery disease event than
the other clinical risk predictors when they were combined, it was

more accurate than any of the other individual clinical risk factors
(Figure 3A).27 Additionally, when PRS were added to the existing
combination of clinical risk predictors, the accuracy increased. Ex-
trapolating the UK Biobank results to 13 million UK residents aged
40 to 55 years, it is estimated that incorporating PRS into the QRISK
algorithm23 could lead to many hundreds of thousands of people
changing risk category: more than 500 000 could move from less
than the threshold for statin prescription to greater than the risk
threshold, while more than 200 000 people could move from
greater than the risk threshold for statin prescription to less than
the threshold.28 Although application of PRS in prediction of car-
diovascular risk is an ongoing topic of discussion,29,30 incorporat-
ing genetic data into such risk algorithms used routinely in primary
care could have significant public health implications.

Global interest in using PRS is most notable for diseases that al-
ready have population-based screening and prevention programs.
Because screening programs carry both benefits and risks (eg, un-
necessary invasive test and/or treatments), additional information
with which to stratify risk could result in screening being focused on
a more restricted group, which could potentially decrease risks as-
sociated with screening for the population overall, and lead to cost
savings.31 Hence, PRS-based risk stratification could be of poten-
tial utility in other contexts such as colorectal cancer (where screen-
ing kits are posted biannually to those older than 50 years and where
resources to encourage kit return could focus on those at highest
PRS-based risk32) or breast cancer (where PRS could personalize age
at first breast screening33). Another example is application to com-
mon eye disorders, such as glaucoma, where those with high-
glaucoma PRS34 could be particularly encouraged to take up the oph-
thalmological screening because intervention on early detection of
increased intraocular pressure can prevent otherwise irreversible
blindness.

For some common diseases, there are known rare variants of
large effect. For example, about 2% of breast cancers in women

Figure 3. Examples of Polygenic Risk Scores (PRS) Applications in Heart Disease and Breast Cancer
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A, Relative importance of conventional and PRS risk factors associated with
coronary artery disease risk.26 The y-axis can be interpreted as the probability
that a person who went on to have coronary artery disease ranked higher on
the risk predictor than someone who did not get the disease. Results from
Cox regression of incident coronary artery disease in the UK Biobank for

conventional risk factors individually and in combination with the PRS,
including covariates (sex-strati!ed age-as-timescale). B, Predicted breast cancer
risk by percentile of breast cancer PRS and by age within women who have
BRCA1 mutations.27 See the eAppendix in the Supplement for more detail.
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Polygenic scores (PGS)

Polygenic risk score (PRS)

scores can be calculated from an individual’s DNA sample for all
disorders for which risk variants have been identified and are
essentially a count of the number of the risk variants present in
the person’s DNA, weighted so that the presence of some risk
variants is considered more important than others. The identities
of the specific risk variants, and the basic information about
how to weigh them, comes from the allele frequency differences
between cases and controls identified in genome-wide associa-
tion studies (GWAS).5 The optimal selection of variants and
the weights associated with them is an active area of research
(eAppendix in the Supplement). Notably, risk prediction does not
need knowledge of causal variants and can tolerate inclusion of
some false-positive variants. Polygenic risk scores are validated
by application in cohorts with already known case/control status.
If the PRS are found to be predictive of the disease, then the PRS

can be applied to an individual with unknown disease status,
with the score benchmarked against a large group of ancestry-
matched individuals. Ideally, at this stage, the PRS should be fur-
ther validated for utility through formal clinical trials. Although
the acronym PRS is currently the most widely used nomenclature,
other acronyms are used (eAppendix in the Supplement). There
are many statistics to evaluate PRS and they are interrelated
(eAppendix in the Supplement). Most GWAS to date have been
conducted in those of European ancestry; therefore, while some
predictive ability is expected for individuals from other ancestral
populations, the prediction is expected to be attenuated particu-
larly into those with African ancestry20,21 (eAppendix in the
Supplement). There is considerable effort to increase GWAS
sample collection across worldwide population groups to address
this concern.20,21

Figure 2. Schematic of the Steps Needed to Generate and Validate Polygenic Risk Scores (PRS)
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1. Large genome-wide association study

2. Get association summary statistics

3. Methods to choose DNA variants and to decide their weights

Accuracy of PRS could be lower when applied in non-European individuals

4. Evaluate PRS in samples with known
case-control status

5. Calculate PRS for individuals with unknown disease
status and benchmark risk against population
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Polygenic score (PGS)

PGS = +𝛽!𝑥(! + +𝛽)𝑥() + +𝛽*𝑥(* +⋯	= ∑+,!
"!"# 1𝛽+𝑥(+

A weighted sum of the count of risk alleles

How many SNPs?
Which SNPs?
What weights? 

New methods model genetic architecture:

LDpred-Inf
SBLUP

LDPred2
SBayesC

SBayesRBSLMM
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Each SNP effect has a mixture prior distribution: 

SBayesR (Lloyd-Jones and Zeng et al 2019)
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ARTICLE

Improved polygenic prediction by Bayesian multiple
regression on summary statistics
Luke R. Lloyd-Jones 1,9*, Jian Zeng 1,9*, Julia Sidorenko1,2, Loïc Yengo1, Gerhard Moser3,4,
Kathryn E. Kemper1, Huanwei Wang 1, Zhili Zheng1, Reedik Magi2, Tõnu Esko2, Andres Metspalu2,5,
Naomi R. Wray 1,6, Michael E. Goddard7, Jian Yang 1,8* & Peter M. Visscher 1*

Accurate prediction of an individual’s phenotype from their DNA sequence is one of the great

promises of genomics and precision medicine. We extend a powerful individual-level data

Bayesian multiple regression model (BayesR) to one that utilises summary statistics from

genome-wide association studies (GWAS), SBayesR. In simulation and cross-validation using

12 real traits and 1.1 million variants on 350,000 individuals from the UK Biobank, SBayesR

improves prediction accuracy relative to commonly used state-of-the-art summary statistics

methods at a fraction of the computational resources. Furthermore, using summary statistics

for variants from the largest GWAS meta-analysis (n ≈ 700, 000) on height and BMI, we

show that on average across traits and two independent data sets that SBayesR improves

prediction R2 by 5.2% relative to LDpred and by 26.5% relative to clumping and p value

thresholding.
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can accommodate various genetic architectures

Model:

𝐛	 = 	 𝐑	 𝜷	 + 	 𝝐

ResidualsGWAS SNP marginal 
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LD correlation 
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SNP joint 
effects
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Download the example data and R scripts at

https://cnsgenomics.com/data/teaching/AusUKB2024/session1/

For real trait analysis, we use GCTB to perform the analysis.
https://cnsgenomics.com/software/gctb/

Practical
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June 24 - 28, 2024

Registration open soon!

Genetics & Genomics 
Winter School

fefsfe

Genetics & Genomics Winter School  
June 19 - 23, 2023  |  Brisbane, Australia

Statistical and Computational Methods

On-site lectures + hands-on practical exercises 
6 modules offered, each 1.5 days
1 drop-in session: lab tour or small group consultation
Construct your own week-long course
Each class size limited to 40 participants
Scan QR code for registration

Genetic Mapping
Basic concepts and methods for 
mapping genetic variants and genes 
using GWAS data.

• GWAS 
• Gene-based test  
• Fine mapping

Instructor: Kathryn Kemper

Systems Genomics & 
Pharmacogenomics

Molecular QTL studies and integrative 
omics analysis to predict both the 
beneficial and adverse effects of drugs.

• Transcriptome-wide QTL analysis  
• SMR

• Connectivity Map

Instructor: Sonia Shah

Quantitative Genetics I
Critical concepts and methods for 
estimation of genetic variance and 
heritability.

• Mixed effects models 
• GCTA-GREML
• LD score regression

Instructor: Loic Yengo

Cellular Transcriptomics
Analysis of single cell & spatial 
transcriptomics data to reveal cell and 
tissue specific patterns.

• Single cell & Spatial transcriptomics

• Cell type analysis
• Machine learning for imaging and 
sequencing data

Instructor: Quan Nguyen

Genetic Epidemiology
State-of-the-art methods for causal 
inference that use genetic data.

• Mendelian randomization
• Structural equation modelling

• Genomic Structural Equation Modelling

Instructor: Nicole Warrington

Quantitative Genetics II
Critical concepts and methods for 
polygenic score prediction.

• Opportunities and challenges
• Best Linear Unbiased Prediction
• Bayesian methods

Instructor: Jian Zenggene.pnggene.png
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