Introduction to GWAS summary statistics &

application in polygenic prediction

Jian Zeng

j.zeng@uq.edu.au

Outline

What are GWAS summary statistics (SumStats)?

Where to download?

What should we check?

How to use them?

- Example: polygenic score (PGS) prediction using SBayesR

Consensus of sharing GWAS summary statistics (in human genetics research community)

Has Become a standard to share and make publicly available the summary-level data when publishing a GWAS study.

nature genetics

Asking for more

Because of the usefulness of genome-wide association study (GWAS) data for mapping regulatory variation in the human genome, the journal now asks authors to report the co-location of trait-associated variants with gene regulatory elements identified by epigenetic, functional and conservation criteria. We also ask that authors publish or database the genotype frequencies or association *P* values for all SNPs investigated, whether or not they reached genome-wide significance.

Check for updates

Cell Genomics

PRIMER

Perspective

2021

Workshop proceedings: GWAS summary statistics standards and sharing

Jacqueline A.L. MacArthur, ^{1,2,*} Annalisa Buniello, ¹ Laura W. Harris, ¹ James Hayhurst, ¹ Aoife McMahon, ¹ Elliot Sollis, ¹ Maria Cerezo, ¹ Peggy Hall, ³ Elizabeth Lewis, ¹ Patricia L. Whetzel, ¹ Orli G. Bahcall, ⁴ Inês Barroso, ⁵ Robert J. Carroll, ⁶ Michael Inouye, ^{7,8,9} Teri A. Manolio, ³ Stephen S. Rich, ¹⁰ Lucia A. Hindorff, ³ Ken Wiley, ³ and Helen Parkinson^{1,*}

Table 1. Recommended standard reporting elements for GWAS SumStats

Data element	Column header	Mandatory/Optional
variant id	variant_id	One form of variant ID
chromosome	chromosome	is mandatory, either rsID
base pair location	base_pair_ location	or chromosome, base pair location, and genome build ^a
p value	p_value	Mandatory
effect allele	effect_allele	Mandatory
other allele	other_allele	Mandatory
effect allele frequency	effect_allele_ frequency	Mandatory
effect (odds ratio or beta)	odds_ratio or beta	Mandatory
standard error	standard_error	Mandatory
upper confidence interval	ci_upper	Optional
lower confidence interval	ci_lower	Optional

Genome-wide association studies

Emil Uffelmann¹, Qin Qin Huang², Nchangwi Syntia Munung³, Jantina de Vries³, Yukinori Okada^{4,5}, Alicia R. Martin^{6,7,8}, Hilary C. Martin², Tuuli Lappalainen^{9,10,12} and Danielle Posthuma^{1,11} □

Table 3 | Databases of GWAS summary statistics

Database	Content
GWAS Catalog ¹¹⁰	GWAS summary statistics and GWAS lead SNPs reported in GWAS papers
GeneAtlas ⁸	UK Biobank GWAS summary statistics
Pan UKBB	UK Biobank GWAS summary statistics
GWAS Atlas ²⁷³	Collection of publicly available GWAS summary statistics with follow-up in silico analysis
FinnGen results	GWAS summary statistics released from FinnGen, a project that collected biological samples from many sources in Finland
dbGAP	Public depository of National Institutes of Health-funded genomics data including GWAS summary statistics
OpenGWAS database	GWAS summary data sets
Pheweb.jp	GWAS summary statistics of Biobank Japan and cross-population meta-analyses

For a comprehensive list of genetic data resources, see REF.¹³. GWAS, genome-wide association studies; SNP, single-nucleotide polymorphism.

Critical information from GWAS SumStats

- SNP name/position
- Effect allele and alternate allele (A1 and A2)
- Effect allele frequency
- Marginal SNP effect
- Standard error
- P-value
- (Per-SNP) GWAS sample size

```
SNP A1 A2 freq b se p N
rs1001 A G 0.8493 0.0024 0.0055 0.6653 129850
rs1002 C G 0.0306 0.0034 0.0115 0.7659 129799
rs1003 A C 0.5128 0.0045 0.0038 0.2319 129830
```

.ma file

Where to download the UK Biobank SumStats?

fastGWA

https://yanglab.westlake.edu.cn/soft ware/acta/#DataResource

genetics

TECHNICAL REPORT

A resource-efficient tool for mixed model association analysis of large-scale data

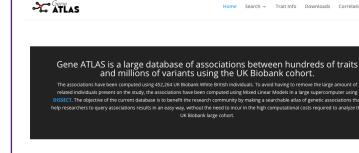
Longda Jiang ^{1,4}, Zhili Zheng^{1,2,4}, Ting Qi¹, Kathryn E. Kemper ¹, Naomi R. Wray ¹, Peter M. Visscher ¹ and Jian Yang ¹,

TECHNICAL REPORT https://doi.org/10.1038/s41588-021-00954-4

A generalized linear mixed model association tool for biobank-scale data

Longda Jiang¹,2,4, Zhili Zheng¹,4, Hailing Fang²,3 and Jian Yang ⊕¹,2,3 ⊠

Pan-UKB


https://pan.ukbb.broadinstitute.org

Pan-ancestry genetic analysis of the UK Biobank

GeneAtlas

http://geneatlas.roslin.ed.ac.uk

452264

//8

30 Million Variants

fastGWA

GCTA

a tool for Genome-wide Complex Trait Analysis

GSMR

OSCA

CTG forum Yang Lab

Overview

Download

FAQ

Basic Options

GREML

GWAS Analysis

GWAS Simulation

Conditional Analysis

Gene-based Test

Mendelian Randomisation

Genomic Risk Prediction

Linkage Disequilibrium

Population Genetics

Data Resource

UK Biobank GWAS results

Data Resource

UK Biobank GWAS results

We developed two resource-efficient tools, fastGWA and fastGWA-GLMM, for mixed model-based association analysis in large-scale data. We first applied fastGWA to 2,173 traits on 456,422 array-genotyped as well as 49,960 whole-exome-sequenced individuals of European ancestry in the UK Biobank (UKB) (Jiang et al. 2019 Nat Genet). We then applied fastGWA-GLMM to 2,989 binary traits on 456,348 array-genotyped individuals of European ancestry in the UKB (Jiang et al. 2021 Nat Genet). See below for detailed instructions to guery and download the data. You can also guery or visualize the GWAS summary data using the fastGWA data portal.

- fastGWA summary statistics using the imputed data (Jiang et al. 2019 Nat Genet): 456,422 individuals of European ancestry; 8,531,416 variants (MAF > 0.01 and missingness rate < 0.1); 2,173 traits.
 - Summary table: UKB_impute_v1.1.csv
 - Online tool: https://yanglab.westlake.edu.cn/data/ukb_fastgwa/imp/
 - Linux command to download all the summary statistics (2,173 files; 454 GB in total):

mkdir ukb && cd ukb && wget https://yanglab.westlake.edu.cn/software/gcta/res/UKB_impute_v1.1.list && wget -i UKB_impute_v1.1.list

- fastGWA summary statistics using the whole-exome sequence (WES) data (Jiang et al. 2019 Nat Genet): 46.191 individuals of European ancestry; 152,327 variants (MAF > 0.01 and missingness rate < 0.1); 2,048 valid traits.
 - Summary table: UKB_WES_v1.1.csv
 - Online tool: https://yanglab.westlake.edu.cn/data/ukb_fastgwa/wes/
 - Linux command to download all the summary statistics (2,048 files; 8 GB in total):

Whole-exome sequence data

Imputed data

mkdir wes && cd wes && wget https://yanglab.westlake.edu.cn/software/gcta/res/UKB WES_v1.1.list && wget -i UKB WES_v1.1.list

- fastGWA-GLMM summary statistics using the imputed data (Jiang et al. 2021 Nat Genet): 456,422 individuals of European ancestry; 11,842,647 variants (MAF > 0.0001 and missingness rate < 0.1); 2,989 binary traits.
 - Summary table: UKB_binary_v1.11.csv
 - Online tool: https://yanglab.westlake.edu.cn/data/ukb_fastqwa/imp_binary/
 - Linux command to download all the summary statistics (2,989 files; 1.2 TB in total):

Imputed data for binary traits

mkdir ukb_binary && cd ukb_binary && wget https://yanglab.westlake.edu.cn/software/gcta/res/UKB_binary_v1.11.list && wget -i UKB_bi nary_v1.11.list

fastGWA

Data format from fastGWA

Summary table (UKB_impute_v1.1.csv):

ID	Description	Data_type	Method	N	Ncase	Gender_specific	URL
100001	Food weight	Continuous	MLM	64029	NA		https://yanglab.westlake.edu.cn/resources/fastgwa_data/UKB/100001.v1.1.fastGWA.gz
100002	Energy	Continuous	MLM	64029	NA		https://yanglab.westlake.edu.cn/resources/fastgwa_data/UKB/100002.v1.1.fastGWA.gz
100003	Protein	Continuous	LR	64029	NA		https://yanglab.westlake.edu.cn/resources/fastgwa_data/UKB/100003.v1.1.fastGWA.gz
100004	Fat	Continuous	MLM	64029	NA		https://yanglab.westlake.edu.cn/resources/fastgwa_data/UKB/100004.v1.1.fastGWA.gz
100005	Carbohydrate	Continuous	MLM	64029	NA		https://yanglab.westlake.edu.cn/resources/fastgwa_data/UKB/100005.v1.1.fastGWA.gz
100006	Saturated fat	Continuous	MLM	64029	NA		https://yanglab.westlake.edu.cn/resources/fastgwa_data/UKB/100006.v1.1.fastGWA.gz
100007	Polyunsaturated fat	Continuous	MLM	64029	NA		https://yanglab.westlake.edu.cn/resources/fastgwa_data/UKB/100007.v1.1.fastGWA.gz
100008	Total sugars	Continuous	MLM	64029	NA		https://yanglab.westlake.edu.cn/resources/fastgwa_data/UKB/100008.v1.1.fastGWA.gz
100009	Englyst dietary fibre	Continuous	MLM	64029	NA		https://yanglab.westlake.edu.cn/resources/fastgwa_data/UKB/100009.v1.1.fastGWA.gz
100010	Portion size	Ordered_Categorical	MLM	64001	NA		https://yanglab.westlake.edu.cn/resources/fastgwa_data/UKB/100010.v1.1.fastGWA.gz
100011	Iron	Continuous	MLM	64029	NA		https://yanglab.westlake.edu.cn/resources/fastgwa_data/UKB/100011.v1.1.fastGWA.gz

Summary statistics (100001.v1.1.fastGWA.gz):

CHR	SNP POS	A1	A2	N	AF1	BETA SE	P		
1	rs144155419	717587	G	Α	62687	0.989495	-0.00553627	0.0270775	0.837994
1	rs58276399	731718	Т	C	61089	0.888139	-0.00324112	0.00889488	0.715574
1	rs141242758	734349	Т	С	61284	0.888185	-0.00148931	0.00888356	0.86686
1	rs28544273	751343	Т	Α	62869	0.877778	-0.00614735	0.00842396	0.465546

Format of the summary statistics from fastGWA:

CHR: chromosome SNP: SNP ID POS: SNP position A1: the effect allele

A1: the effect allele
A2: the other allele
N: per allele sample size

AF1: frequency of A1 BETA: SNP effect SE: standard error

P: p value

fastGWA-GLMM

Data format from fastGWA-GLMM

Summary table (UKB_binary_v1.1.csv):

ID	Description	N	N_case	N_control	ratio	URL							
785_PheCode	Abdominal pain	456348	35233	421115	0.083665982	https://yang	glab.westlake	.edu.cn/resou	rces/fastgwa	_data/UKBbi	n/785_PheCo	de.v1.0.fast@	iWA.gz
418_PheCode	Nonspecific chest pain	456348	29202	427146	0.068365383	https://yang	glab.westlake	.edu.cn/resou	urces/fastgwa	_data/UKBbi	n/418_PheCo	de.v1.0.fast@	WA.gz
208_PheCode	Benign neoplasm of colon	456348	19026	437322	0.043505701	https://yang	glab.westlake	.edu.cn/resou	ırces/fastgwa	_data/UKBbi	n/208_PheCo	de.v1.0.fast@	WA.gz
535_PheCode	Gastritis and duodenitis	456348	17420	438928	0.039687603	https://yang	glab.westlake	.edu.cn/resou	urces/fastgwa	_data/UKBbi	n/535_PheCo	de.v1.0.fast@	WA.gz

Summary statistics (785_PheCode.v1.0.fastGWA.gz):

CHR	SNP POS	A1	A2	N	AF1	T SE_T	P_noSPA BETA	SE P	CONVERGE			
1	rs2531267	69569	C	Т	456285	0.000151221	0.44236 3.10901	0.886856	0.0457649	0.321646	0.886856	1
1	rs12238997	693731	G	Α	418020	0.0936486	-9.26915	70.4227 0.895284	-0.00186	5902 0.0142	0.895284	1
1	rs144155419	717587	Α	G	446865	0.0105065	5.90265 25.6125	0.817734	0.00899798	0.0390435	0.817734	1
1	rs189787166	723329	Т	Α	455943	0.00132034	4.55647 9.18687	0.619911	0.0539875	0.108851	0.619911	1
1	rs148120343	730087	C	Т	432816	0.0439633	3.02531 50.5154	0.952244	0.00118556	0.0197959	0.952244	1
1	rs58276399	731718	C	Т	436309	0.111288	24.933 78.0154	0.749278	0.00409652	0.012818	0.749278	1
1	rs141242758	734349	C	Т	437558	0.111188	19.3493 78.0909	0.804305	0.00317296	0.0128056	0.804305	1

Format of the summary statistics from fastGWA-GLMM:

```
CHR: chromosome
SNP: SNP ID
POS: SNP position
A1: the effect allele
A2: the other allele
N: per allele sample size
AF1: the allele frequency of A1
T: GLMM score statistic
SE_T: standard error of the score statistic
P_noSPA: raw p-value
BETA: SNP effect or log(odds ratio)
SE: standard error for the estimated effect size after the SPA correction
P: p-value after the SPA correction
CONVERGE: to indicate whether the SPA correction is converged for the variant
```


10

Other useful data resource in the public domain

GWAS catalog (https://www.ebi.ac.uk/gwas/)

• 59,946 studies

FinGenn (https://www.finngen.fi/en)

• Freeze 10: >412,000 individuals, 2,408 disease endpoints

PGC (https://pgc.unc.edu)

Multiple waves with increasing sample sizes for psychiatric disorders

Global Biobank Engine (https://biobankengine.stanford.edu)

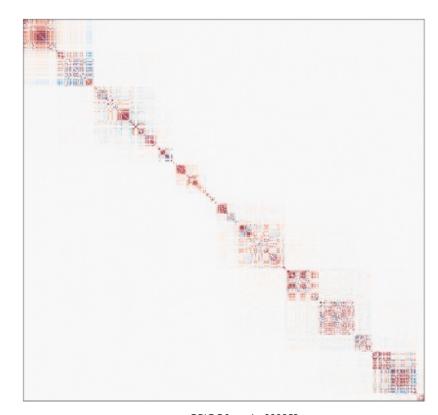
• > 750,000 individuals across three population cohorts: UK Biobank, Million Veterans Program and Biobank Japan.

11

What can we do with them?

- Meta-analysis: METAL, MTAG
- Finding independent association loci: PLINK-clumping, GCTA-COJO
- Fine-mapping causal variants: FINEMAP, SuSiE
- Exploring pleiotropic effects (PheWAS)
- Gene-based test: MAGMA, fastBAT, mBAT-combo
- Integrating with functional data: coloc, SMR, TWAS, OPERA
- Inferring trait-relevant tissues/cell types: LDSE-SEG, MAGMA-gene-set, scDRS
- Estimating SNP-based heritability: LDSC, SBayesR
- Estimating genetic correlation: Popcorn, MiXeR
- Predicting polygenic score (PGS/PRS): PRScie, LDpred2, PRScs, SBayesR
- Inferring causal relationship between traits: GSMR, LCV

• ...

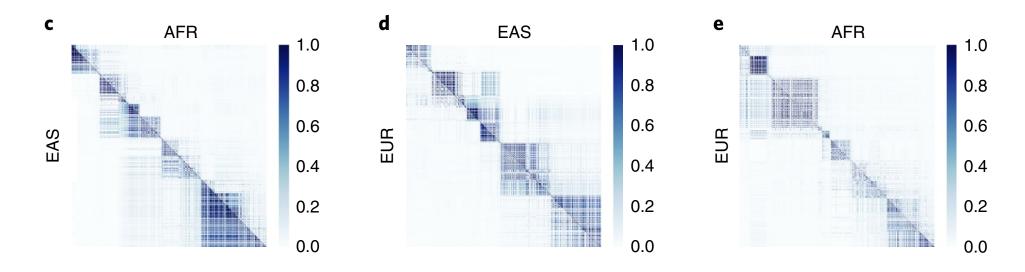

Linkage disequilibrium (LD) correlations

Usually obtained from a reference population

LD correlation matrix

$$\mathbf{R} = \frac{1}{n} \mathbf{X}' \mathbf{X}$$

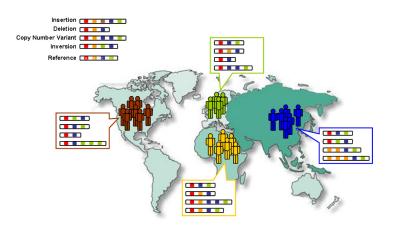
assuming **X** is standardised with mean zero and variance one



Mat

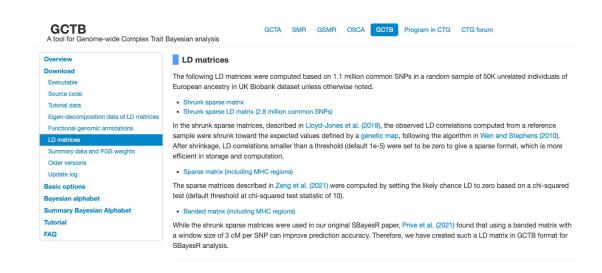
/ith GWAS sample in genetics LD re

- No systemic differences in large same ancestry and population structure
 Minimu applied ance ancestry and population structure
 → LD ref sample size cannot be too small


Martin et al 2019 Nature Genetics

Where to find LD reference data?

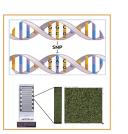
1000 Genomes Project (1KGP)

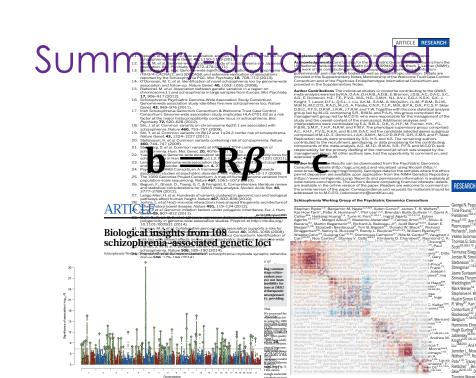

Individual sequence data
https://www.internationalgen.one.org

UK Biobank (UKB)

We provide LD matrices computed from a subset of UKB samples

https://cnsgenomics.com/software/gctb/
#LDmatrices





Individual-data model

$$y = X\beta + e$$

The key is that $b_j = \frac{1}{n} \mathbf{X}_j' \mathbf{y}$ where $\mathbf{X}_j' \mathbf{y}$ is the sufficient statistic for many analyses.

Pack Hospital, 1994.

"Berk Hospital, 1994.

menth. Button Underwish visional Button Mescarbuson TCD 11 (15): "Objective Missional Conference of Psychiatry District Section Feedings (15): 150

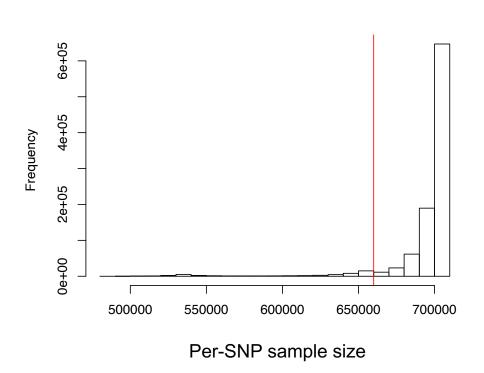
What should we check prior to the analysis?

Raw data file

Item	What could be wrong?	How to fix?
Genome build	Inconsistent coordinates among GWAS summary data and LD reference.	Lift up to the same genome build using liftover
SNP ID	rsID not provided.	Use chromosome and position information to find their rsID (from LD reference file).
Alleles	Lower/upper case. Unknown effect allele (A1/A2, REF/ALT).	Check ReadMe file. Check if the predictor is negatively correlated with the phenotype.
Effect allele frequency (p)	Missing data. Provided data are minor allele frequency (MAF). Separate values in cases and controls.	Use data from LD reference. Impute by summary data $2pq = 1/(N*SE + N*b^2)$. Compute $p = \frac{N_{case} \; p_{case} \; + N_{ctrl} \; p_{ctrl}}{N_{case} \; + N_{ctrl}}$.
Marginal effect (b)	Provided data are Z-score or odds ratio (OR).	b = Z/SE if SE is provided, or $b = Z/\sqrt{2p(1-p)(N+Z^2)}$ given unit variance. b = log(OR).
Standard error (SE)	Missing data.	SE = b/Z if b is provided, or $SE = 1/\sqrt{2p(1-p)(N+Z^2)}$ given unit variance.
Sample size (N)	Missing data. Separate values in cases and controls.	Check publication/ReadMe file. Some methods require total sample size, while some requires effective sample size.
Incorrect data field format.	Some data field has NA and is non-numeric.	Convert to correct format and filter/impute missing data.

What should we check prior to the analysis? (configueensland

Quality control (QC)

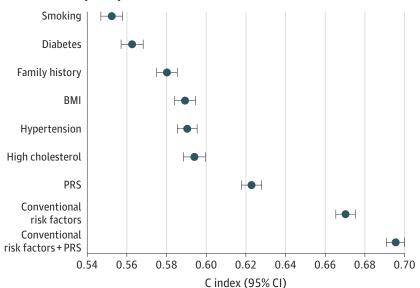

Item	What could be wrong?	How to fix?
Missing data	Some SNPs have missing data.	Impute the missing data or remove SNPs.
Mismatched SNPs	SNPs in GWAS are missing in the LD reference, or in reverse.	For applications requiring a perfect match, filter SNPs or impute their marginal effects (e.g., <i>ImpG</i>).
Allele discordance	Discordant alleles between data sets, e.g., A/T in GWAS but T/A in LD reference.	Flip the alleles in GWAS and take the opposite sign of the marginal effect size.
Allele frequency differences	Large differences between GWAS and LD reference data.	Remove SNPs with large difference, e.g., > 0.2.
LD differences	LD reference does not match LD in the GWAS sample.	Choose a better LD reference. Remove SNPs with LD heterogeneity (<i>DENTIST</i>).
Variable per-SNP sample sizes	Dispersed/skewed/multimodal distribution. Only overall sample size provided in meta- analysis.	Visualise the distribution. Remove long tail/minor mode/ outliers, e.g., $> 3*SD$. Impute N = $1/(2pq(SE+b^2))$ if necessary.
Sample size for disease	Total sample size ($N_{case} + N_{ctrl}$) or effective sample size - which one to use?	For SBayes, we recommend using the total sample size.

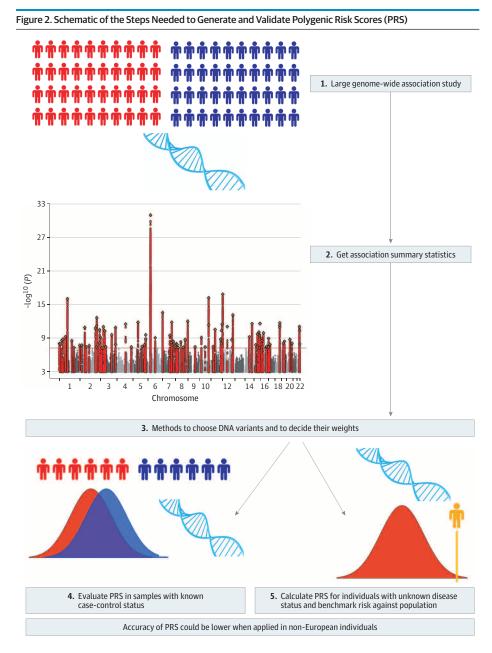
CRICOS code 00025B

17

Heterogeneity in per-SNP sample size

Freduency
300000 350000 400000 450000 500000 600000

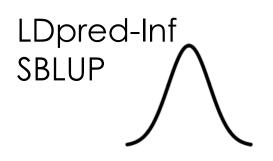

Per-SNP sample size

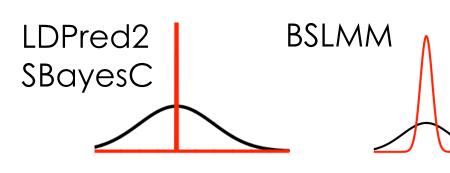

Example

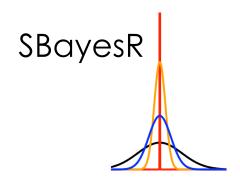
Polygenic scores (PGS) Polygenic risk score (PRS)

Relative importance of conventional and PRS risk factors associated with coronary artery disease risk

Polygenic score (PGS)




A weighted sum of the count of risk alleles


$$PGS = \widehat{\beta_1} x_{i1} + \widehat{\beta_2} x_{i2} + \widehat{\beta_3} x_{i3} + \dots = \sum_{j=1}^{n_{SNP}} \widehat{\beta_j} x_{ij}$$

How many SNPs? Which SNPs? What weights?

New methods model genetic architecture:

SBayesR (Lloyd-Jones and Zeng et al 2019)

nature communications

Model:

$$\mathbf{b} = \mathbf{R} \qquad \boldsymbol{\beta}$$

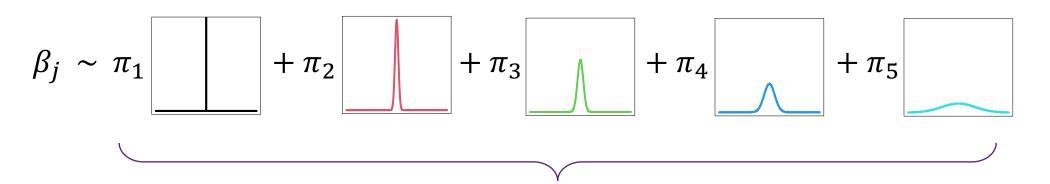
GWAS SNP marginal effects

LD correlation matrix

SNP joint effects

Residuals

ARTICLE


https://doi.org/10.1038/s41467-019-12653-0

OPEN

Improved polygenic prediction by Bayesian multiple regression on summary statistics

Luke R. Lloyd-Jones 19, Jian Zeng 19, Julia Sidorenko 12, Loïc Yengo 1, Gerhard Moser 3, Kathryn E. Kemper 1, Huanwei Wang 1, Zhili Zheng 1, Reedik Magi 2, Tõnu Esko 2, Andres Metspalu 2, 5, Naomi R. Wray 1, Michael E. Goddard 7, Jian Yang 1, 8 & Peter M. Visscher 1 to

Each SNP effect has a mixture prior distribution:

can accommodate various genetic architectures

Practical

Download the example data and R scripts at

https://cnsgenomics.com/data/teaching/AusUKB2024/session1/

1000G eur chr22 1ksn..> 2024-02-02 11:49 129K

pgs prediction.R 2024-02-02 11:49 1.3K

sbayesr.R 2024-02-02 11:49 3.7K

For real trait analysis, we use GCTB to perform the analysis. https://cnsgenomics.com/software/gctb/

CRICOS contre 0000225BB 22

June 24 - 28, 2024

Registration open soon!

THE UNIVERSITY OF QUEENSLAND CREATE CHANGE

Genetics & Genomics Winter School

June 24 - 28, 2024 Brisbane, Australia

Statistical and Computational Methods

Genetic Mapping

Basic concepts and methods for mapping genetic variants and genes using GWAS data.

- GWAS
- · Gene-based test
- Fine mapping

Instructor: Kathryn Kemper

Quantitative Genetics

Critical concepts and methods for estimation of genetic variance and heritability.

- · Mixed effects models
- · GCTA-GREML
- · LD score regression Instructor: Loic Yengo

Quantitative Genetics II

Critical concepts and methods for polygenic score prediction.

- · Opportunities and challenges
- · Best Linear Unbiased Prediction
- · Bavesian methods

Instructor: Jian Zeng

Cellular Transcriptomics

Analysis of single cell & spatial transcriptomics data to reveal cell and tissue specific patterns.

- · Single cell & Spatial transcriptomics
- · Cell type analysis
- · Machine learning for imaging and sequencing data

Instructor: Quan Nguyen

Genetic Epidemiology

State-of-the-art methods for causal inference that use genetic data.

- · Mendelian randomization
- · Structural equation modelling

Scan QR code for registration

· Genomic Structural Equation Modelling Instructor: Nicole Warrington

Systems Genomics & Pharmacogenomics

Molecular QTL studies and integrative omics analysis to predict both the beneficial and adverse effects of drugs.

- · Transcriptome-wide QTL analysis
- · Connectivity Map Instructor: Sonia Shah

On-site lectures + hands-on practical exercises 6 modules offered, each 1.5 days 1 drop-in session: lab tour or small group consultation Construct your own week-long course Each class size limited to 40 participants